By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Taking the question out of questionable claims
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Taking the question out of questionable claims
Business IntelligenceCRMData MiningPredictive Analytics

Taking the question out of questionable claims

JamesTaylor
Last updated: 2009/03/11 at 9:47 PM
JamesTaylor
5 Min Read
SHARE

Copyright © 2009 James Taylor. Visit the original article at Taking the question out of questionable claims.Jeff Moore from General Electric and Greg Spraker from SAS (see my review of the SAS Warranty product here) spoke on using analytics to find and eliminate fraud in claims. GE’s appliance division dealt with paper claims prior to […]


Copyright © 2009 James Taylor. Visit the original article at Taking the question out of questionable claims.

Jeff Moore from General Electric and Greg Spraker from SAS (see my review of the SAS Warranty product here) spoke on using analytics to find and eliminate fraud in claims. GE’s appliance division dealt with paper claims prior to 2003 and randomly selecting claims for audit. Between 2003 and 2005 they increased the number of auditors but hard to find the patterns across auditors and, although they had rules-based flags, they had no way to improve the rules systematically. Since 2006 have been applying increasing amounts of predictive analytic technology.

Once they had implemented a claims system (they get 1M or so claims a year) they still found that tended to focus on single claims and so missed the trends and organized fraud. They identified some key areas like:

More Read

big data and IP laws

Big Data & AI In Collision Course With IP Laws – A Complete Guide

4 Ways AI Can Enhance Your Marketing Strategies
Translating Artificial Intelligence: Learning to Speak Global Languages
4 Ways AI Can Improve Your Marketing Strategy
Using AI to Create Customized eCommerce Experiences for Consumers
  • Was a repair was actually performed and what repair was actually done?
  • What parts were used?
  • 6,000 servicers with multiple employees – who is not trustworthy?
  • Is the quality data that comes back accurate so that it can be used for quality improvement?
  • Parts costs are escalating fast and inflation of prices is an issue
  • Products change rapidly and repair types therefore should change too
  • Fuel surcharges or extra mileage to cover fuel costs

GE works with SAS using a SaaS model. Claims are sent to SAS before payment and 26 claim-level analytics are calculated for each claim. Claims are flagged for audit with multiple elements compared to averages. They also do 10 servicer-level analytics based on a comparison to historical data previously sent to SAS.  This has saved GE a huge sum – more than $6.5M in a 10 month period. About $5M of this was in rejected claims – much of this from bad claims rather than deliberate or systematic fraud. They also had some servicers where they could not validate a single claim and another $1.5M savings is estimated from claims that these servicers would have been paid had they not been suspended.

Some examples included:

  • Finding a servicer who was using new serial numbers on old products and so claiming for products that had not been made in years.
  • Another servicer was filing apparently good claims against imaginary consumers. They got fired but then filed a whole bunch of claims that pre-dated the date they were fired. The system detected this spike too.
  • Another used to go back and forth between job codes to boost amount they were paid and this had slipped by when only individual claims were investigated.
  • The system finds servicers who have a bad employee or small group of employees.
  • Excess mileage detected in another case

GE learned that analytics let’s them work smarter not harder – inspect fewer claims but catch more fraud. In one group for instance they went from looking at 75% of claims to 30% while catching more problems. They also learned that patterns are more important than single claims. The analytics allowed them to find holes in the rules they were using to validate claims and, as usual, 80% of losses are driven by 20% of servicers. Overall they got reduced cost, increased savings and speedier turnaround.

Greg wrapped up by giving some examples of continuous improvement – street address validation, house to house distance calculations, feedback false positives, text mining for repeat calls and so on. He also pointed out how important this is to the customer experience. Customers with a bad warranty history are very unhappy but those who have had a single positive warranty experience actually trust companies more. GE is beginning to integrate these warranty analytics with spare parts optimization (treating each truck as a parts storage center), call center forecasting, reserve forecasting and more.

This is a great example not only of using analytics to find patterns of fraud but of feeding that insight back into operational decisions for real decision management.

Previous


Link to original post

JamesTaylor March 11, 2009 March 11, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

big data and IP laws
Big Data

Big Data & AI In Collision Course With IP Laws – A Complete Guide

5 Min Read
ai in marketing
Marketing

4 Ways AI Can Enhance Your Marketing Strategies

7 Min Read
machine,translation
Artificial Intelligence

Translating Artificial Intelligence: Learning to Speak Global Languages

10 Min Read
ai in marketing
Artificial Intelligence

4 Ways AI Can Improve Your Marketing Strategy

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?