Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The unrealized power of data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > The unrealized power of data
Business IntelligenceCRMData MiningPredictive Analytics

The unrealized power of data

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Andreas Weigend, former amazon.com Chief Scientist, gave a keynote on the unrealized power of data. He started with a historical perspective. In the 70s perhaps 10M used computers, mostly in the back office. By the 80s this had reached 100M and the front office. By the 90s the internet and search brought 1Bn poking around and some customer-company interaction. Now there are perhaps 100M producing content on the web in peer-production and collaboration – customers are interacting with customers. Underlying all this is a drop in communication costs essentially to zero. Now people can contribute and fix data rather than simply consume it and the time to respond – the natural timescale – has disappeared.

Some trends:

  • There is now about 100Gb stored per person on the planet and it is doubling every year.
  • Market research can now combine explicit survey data with implicit behavior data
  • There is a move from models being assumption heavy to being data rich thanks to the number of visitors and the amount of information.
  • From knowing about transactions (enough for recomme…


Copyright © 2009 James Taylor. Visit the original article at The unrealized power of data.

More Read

The State of Analytics Across Asia
Big Data Analytics: The Future is Already Here
The Ever-Increasing Importance of Predictive Analytics
Call-For-Speakers: Predictive Analytics World, Feb 16-17 in San Francisco
Business Intelligence and Finance

Syndicated from Smart Data Collective

Andreas Weigend, former amazon.com Chief Scientist, gave a keynote on the unrealized power of data. He started with a historical perspective. In the 70s perhaps 10M used computers, mostly in the back office. By the 80s this had reached 100M and the front office. By the 90s the internet and search brought 1Bn poking around and some customer-company interaction. Now there are perhaps 100M producing content on the web in peer-production and collaboration – customers are interacting with customers. Underlying all this is a drop in communication costs essentially to zero. Now people can contribute and fix data rather than simply consume it and the time to respond – the natural timescale – has disappeared.

Some trends:

  • There is now about 100Gb stored per person on the planet and it is doubling every year.
  • Market research can now combine explicit survey data with implicit behavior data
  • There is a move from models being assumption heavy to being data rich thanks to the number of visitors and the amount of information.
  • From knowing about transactions (enough for recommendation) to knowing interactions (enough for targeting) and ultimately relationships (can move to a long term relationship basis).

The customer data revolution has led companies to “sniff the digital exhaust” and there is far more implicit data like location. In addition, individuals like to talk about themselves creating more data and they reveal their relationships with others in all sorts of way. But to get this information, and thus be able to use it, companies have to have a consumer-centric point of view. They have to offer consumers something in return for their information.

Andreas talked about moving from Customer Relationship Management to Customer Managed Relationships. True customer-centricity empowers customers to make the best decisions they can. Customer value is one thing – what is this customer worth to a company – and companies have a value to a customer. Needs to become a bi-directional relationship.

Companies no longer “own” the customer – customers are more likely to evaluate multiple companies online, for instance. Companies don’t know more about their products any more – the web does – and even cannot control their message or branding.

Marketing 2.0 is different:

  • Communication is not just about companies targeting customers 1:1 but recognizing that customers communicate with each other 1:1.
  • Customers like to review products before they buy them and prefer peer reviews.
  • Relationships also trump many other things. For instance marketing a phone product to those who were called by people who already owned it (using the relationships therefore of existing customers) outperformed a sophisticated marketing model by nearly 5:1. Network-based marketing or leveraging the social graph.
  • Have added all sorts of information about friends, peers, expert bloggers, annotations and more. Using this requires new approaches.

He outlined a five step approach to applying this thinking – PHAME – Problem, Hypothesis, Action, Metrics, Experiment:

  • Problem – defining the problem is key as many businesses have a problem different from what they think they have.
  • Hypothesis – come up with a hypothesis for a solution. This, to some extent, relies on a culture of experimentation.
  • Action – define the actions you are going to try in support of this hypothesis.
  • Metrics – spend some real time defining metrics and measures that will both show that something works and that will encourage movement in the direction you want.
  • Experiments – see what works, doing experiments is both expensive and yet it is cheaper than ignorance.

In conclusion he emphasized that communication costs falling to zero brings customers into the network but only if they get something back and only if the company respects the cost of their attention. Using relationships can result in dramatic results if a experimental and metric-driven culture can be created.

Previous Next


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Business Objects-Scheduling Servers

3 Min Read

Was Edison “Agile”? Extracting New Value from Old Techniques

7 Min Read
Image
Predictive Analytics

Yes, Computers Can Stereotype Now

6 Min Read

Edith on GT : A BI solution for Advanced Data Mining

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?