By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: New Challenges for creating predictive analytic models
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > New Challenges for creating predictive analytic models
Business IntelligenceCRMData MiningPredictive Analytics

New Challenges for creating predictive analytic models

JamesTaylor
Last updated: 2009/02/20 at 11:15 PM
JamesTaylor
6 Min Read
SHARE

Copyright © 2009 James Taylor. Visit the original article at New Challenges for creating predictive analytic models.Syndicated from Smart Data Collective
Khosrow Hassibi of KXEN and Will Tangalos of Wells Fargo presented together on the challenges of predictive analytics in the real world and on Wells Fargo as an example of how some of these challenges […]


Copyright © 2009 James Taylor. Visit the original article at New Challenges for creating predictive analytic models.

Syndicated from Smart Data Collective

Khosrow Hassibi of KXEN and Will Tangalos of Wells Fargo presented together on the challenges of predictive analytics in the real world and on Wells Fargo as an example of how some of these challenges can be met. Khosrow began with an overview of the basic predictive analytic tasks:

More Read

ai low code frameworks

AI Can Help Accelerate Development with Low-Code Frameworks

Tackling Bias in AI Translation: A Data Perspective
How AI is Boosting the Customer Support Game
AI-Based Analytics Are Changing the Future of Credit Cards
Enterprises Are Leveraging the Benefits of AI-Driven ERPs
  • Understand the business problem
  • Data access, understanding and preparation
  • Model creation
  • Assess and present the business value so the model gets accepted
  • Scoring, deployment and monitoring to deliver the value

These have challenges but the challenges are being addressed. In optimized environments (modeling “factories”) the turn around for a
new predictive analytic model from problem identification to solution
deployed is 1-2 weeks. This requires lots of automated support but is achievable.

In more recent years, the role of analytics has expanded as success has been achieved in CRM, Marketing, sales and risk. This has resulted in higher expectations and increased demand and this has combined with new opportunities, like online media, has led to pressure on the model development process – must develop and deploy more models and do so faster. The challenges then:

  1. Managing large numbers of models
    Companies want more models and want them to be more focused. For instance, a telco that insisted on a model for each product for each region that changed monthly – 1,600+ models a year! They got great results using these models – 260% increase in response but this required automation and model management.
  2. Data volume, variety, velocity and validity has improved
    More and more data sources are available and more events and attributes are being stored. Time series, interactions and text data are all contributing to an exponential growth in data. For instance a credit card issuer has several thousand attributes about a customer and wants to select the 10-20 best variables. Using automated attribute detection they managed this in a staff day rather than 2-3 weeks.
  3. In-warehouse modeling/scoring
    Getting models in a timely fashion there is a need to do the modeling without having to move data around. This requires execution in the warehouse by generating code that can be executed on the warehouse system.
  4. Relationship or social network data
    Not just social media but email trails or call detail records – all ways to establish a web of relationships. Making this information availble to models is a challenge but it provides a new perspective. Lots of new potential attributes for modeling. Deriving these atttributes from call records, for instance, provided lift of between 9 and 13% but the data volumes and complexity are high.
  5. Use of under-utilized data
    Web, unstructured and other under-utilized data can be used to develop behaviorial models. This needs lots of pre-processing and other changes.

Will came next to discuss Wells Fargo’s experience in email modeling. Wells has groups focused on both online sales and marketing and email marketing – what to display when someone is online and what to proactively send them. Email has to coordinate with lines of business and does not have a long history of email targeting. Changing this, and using models, was a challenge because the data infrastructure needed to be created and organizational buy-in for the use of analytics had to be managed.

They have created a data infrastructure to bring data to KXEN and can now turn around models in less than a week from problem statement to scored data. They still have to select from all the possible models they could develop because there are so many products that could be targeted. They also have to manage the organizational buy in as channel and product managers no longer have as much control. A model, for instance, to reactivate online banking was delayed for a month while everyone was brought on board and agreed to a test. Even doing this required senior management support but, now it’s done, there is enthusiasm and demand for models amongst these folks.

Lessons learned:

  • Create organizational buy in – communication, education, upfront approval
  • Tools and infrastructure to improve modeling value – automation to reduce time, ease of use to bring in less technical analysts, in-warehouse scoring for quick operationalization
  • Results drive success
Previous Next


Link to original post

JamesTaylor February 20, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence
data Analytics instagram stories
Data Analytics Helps Marketers Make the Most of Instagram Stories
Analytics
data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance
analyst,women,looking,at,kpi,data,on,computer,screen
What to Know Before Recruiting an Analyst to Handle Company Data
Analytics

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

ai low code frameworks
Artificial Intelligence

AI Can Help Accelerate Development with Low-Code Frameworks

12 Min Read
data perspective
Big Data

Tackling Bias in AI Translation: A Data Perspective

9 Min Read
How AI is Boosting the Customer Support Game
Artificial Intelligence

How AI is Boosting the Customer Support Game

6 Min Read
AI analytics
AnalyticsArtificial IntelligenceExclusive

AI-Based Analytics Are Changing the Future of Credit Cards

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?