Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Know your customers – The Twitter way
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Know your customers – The Twitter way
Data Mining

Know your customers – The Twitter way

ThemosKalafatis
ThemosKalafatis
5 Min Read
SHARE
The more i analyze tweets on Twitter, the more interesting i find the whole process. First it was clustering analysis of specific thoughts expressed from Twitter users and then it was Sentiment Mining for Amazon’s Kindle. It was just a matter of time from having the urge to analyze Tweets on a broader perspective.

So i decided to perform a segmentation of the Twitter users : extract common groups of users but this time not for specific thoughts or specific products but a segmentation based on a more generic basis.

I had two goals in this clustering analysis :

1) Cluster the biographies of users
2) Cluster the tweets of the users.

I then decided that the more information i could collect the better, so the first thing i did was to make a ‘spider’ program to extract 10,000 twitter user names. Then for each twitter user the software visits his/her page and extracts :

a) The user’s bio
b) Number of followers
c) Number of people following
d) Number of updates
e) 20 latest Tweets
f) Number of re-tweets
g) Number of replies to other users (ex when @user directive exists)

Let’s see now what we could -potentially- do with such information :

1) Clustering analysis on user bios

2) Clustering analysis on u…

The more i analyze tweets on Twitter, the more interesting i find the whole process. First it was clustering analysis of specific thoughts expressed from Twitter users and then it was Sentiment Mining for Amazon’s Kindle. It was just a matter of time from having the urge to analyze Tweets on a broader perspective.

So i decided to perform a segmentation of the Twitter users : extract common groups of users but this time not for specific thoughts or specific products but a segmentation based on a more generic basis.

I had two goals in this clustering analysis :

1) Cluster the biographies of users
2) Cluster the tweets of the users.

I then decided that the more information i could collect the better, so the first thing i did was to make a ‘spider’ program to extract 10,000 twitter user names. Then for each twitter user the software visits his/her page and extracts :

a) The user’s bio
b) Number of followers
c) Number of people following
d) Number of updates
e) 20 latest Tweets
f) Number of re-tweets
g) Number of replies to other users (ex when @user directive exists)

Let’s see now what we could -potentially- do with such information :

1) Clustering analysis on user bios

2) Clustering analysis on user tweets

3) Classification analysis for identifying the common characteristics of users with many followers

4) Associations discovery between products : Which products tend to be mentioned together in each user’s tweets?

5) Identification of common keywords per cluster : If we identify a cluster of users that we characterize as the “Parents”, what keywords do “Parents” tend to use more? What about the “Tech junkies” cluster?

But let’s start with the first analysis : Clustering the biographies of Twitterers. The analysis generated 30 clusters of users. Some of them are :

1) The Parents
2) The computer Geeks
3) The students
4) The social media addicts
5) The entrepreneurs

I looked at the “Parents” cluster more closely and wanted to find keywords that this cluster is associated with : Single and Jesus where some of them.

So we immediately identify one of the many customer groups : The parents, of which a significant percentage of them are single. The “Parents” cluster also expresses one of its values : Christianity.

By moving on to each generated cluster and finding the associated keywords, i was able to retrieve the values and beliefs of each cluster. Knowledge Extraction at its best…

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

What Is Your Dashboard Telling You?

7 Min Read

Stop Using Search Engines

4 Min Read

one in five people still lacks access to clean, safe drinking…

2 Min Read

At an event in its Hawthorne, NY research facility, Big Blue…

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?