Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: IBM and ILOG – What Else?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > IBM and ILOG – What Else?
Business IntelligenceCRMData MiningPredictive Analytics

IBM and ILOG – What Else?

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Last post in my series as I am off to DIALOG next week and will get a chance to meet some of the IBM folks and chat about their plans. Here, then, are some quickie ideas for ways IBM could use rules besides the ones I mentioned already:

  • Modernizing Legacy
    IBM customers have LOTS of legacy systems. Baking ILOG’s rules product into their legacy modernization approach in a decision service-centric way would let IBM move its clients towards SOA by sensibly extracting business logic (brutally hard to maintain on the mainframe) into coherent decision services built with JRules. These decision services run on the SOA/BPM stack to support new systems while the COBOL version of JRules means that the rules can be re-deployed back to the mainframe to keep the old system in synch with the new. It’s been done, it works and IBM could make it the standard operating procedure.
  • Expanding Optimization
    Optimization is under-utilized in information systems. With resouce and price optimization top of mind in a recession, IBM could use some of ILOG’s new optimization frameworks and its integration between busines rules a…


Copyright © 2009 James Taylor. Visit the original article at IBM and ILOG – What Else?.

Last post in my series as I am off to DIALOG next week and will get a chance to meet some of the IBM folks and chat about their plans. Here, then, are some quickie ideas for ways IBM could use rules besides the ones I mentioned already:

More Read

How Big Data is Creating the Future of Science Fiction
Miss the Right Connections at Your Own Peril
Data hostages: The emerging business model of Web 2.0
How Brands Are Using Big Data & CRM Tools to Build Psychographic Profiles
Predictive Analytics: 8 Things to Keep in Mind (Part 7)
  • Modernizing Legacy
    IBM customers have LOTS of legacy systems. Baking ILOG’s rules product into their legacy modernization approach in a decision service-centric way would let IBM move its clients towards SOA by sensibly extracting business logic (brutally hard to maintain on the mainframe) into coherent decision services built with JRules. These decision services run on the SOA/BPM stack to support new systems while the COBOL version of JRules means that the rules can be re-deployed back to the mainframe to keep the old system in synch with the new. It’s been done, it works and IBM could make it the standard operating procedure.
  • Expanding Optimization
    Optimization is under-utilized in information systems. With resouce and price optimization top of mind in a recession, IBM could use some of ILOG’s new optimization frameworks and its integration between busines rules and optimization to really expand the use of optimization in operaitonal systems – moving it from back-office decision support to front-office decision management. There’s already a center for business optimization at IBM and I think this one’s a gimme.
  • Events, Decisions, Action!
    In the same way that rules-based decisions can make processes simpler, smarter and more agile they can help on the event processing side. Making it easy to deploy the same decision logic as a decision service on the process side and as a “decision agent” on the event side can make it much easier for suitable business decisions to be made in response to events.
  • Decisions on Demand
    There are some interesting moves afoot from some vendors to deliver Decisions As A Service (DaaS) using the cloud to execute business rules and analytic models so that anyone, anywhere can have access to the right decision. As companies become more distributed and more dependent on a network of third parties, this capability becomes more and more appealing. After all you have a lot more choices in outsourcers or partners if you know that the decisions they make about pricing and treating customers will be the ones you manage. DaaS can deliver that.

I am sure there are others but this should be enough for now. Looking forward to blogging about IBM’s actual plans.

Previous


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Recommendations Lose Their Luster

1 Min Read

B2B Social Media – Has Marketing Effectiveness and Efficiency Improved?

9 Min Read
ai in webinar marketing
Artificial IntelligenceExclusive

Brands Are Developing AI-Driven Pre-Webinar Sales Strategies

8 Min Read
mobile tracking data
AnalyticsBig DataExclusivePredictive Analytics

Is Predictive Analytics Changing The Future Of Mobile Phone Monitoring?

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?