Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A tough attribution problem: Do Marketing Affiliates deserve all the credit they get?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A tough attribution problem: Do Marketing Affiliates deserve all the credit they get?
Data Mining

A tough attribution problem: Do Marketing Affiliates deserve all the credit they get?

AkinArikan
AkinArikan
6 Min Read
SHARE

Recently, I received a tough question from one of the well known web analysts in our industry.

“Your book did a great job in detailing how to measure the impact of display advertising.”

Thank you

“However, I was trying to think through how to measure the impact of Affiliate advertising. Do you know of a way to measure […]

More Read

The small impact of business rules on the big players
Disease Management Programs – A Time to Revisit
Looking Back at 14 Years of White House Website Designs…in Pictures
4 Ways to Distribute Your Error Reports
Q&A for 5 Do’s and Don’ts for Behavioral Segmentation, Targeting, & Interactive Marketing

Recently, I received a tough question from one of the well known web analysts in our industry.

“Your book did a great job in detailing how to measure the impact of display advertising.”

Thank you

“However, I was trying to think through how to measure the impact of Affiliate advertising. Do you know of a way to measure if there is incremental lift due to advertising with an affiliate?”

Huh? Don’t you just check the reports in the affiliate marketing network, say LinkShare or Commission Junction? Or isn’t that a simple referral report in your web analytics?

“We have a pesky problem of having lots of customers that would have found their way to our site without the additional advertising.”

Oh boy!

Wholly, cow … that is a tough question! What is the credit that the affiliates truly deserve, i.e. the portion of sales through Affiliates where customers would – not – have purchased the product directly from the manufacturer’s site anyway?

In the offline world an equivalent question exists: What is the credit that my resellers or distribution network deserve, i.e. the portion of their sales where customers would – not – have come to the manufacturer’s own stores or call-center anyway?

So how could either question be researched? We can think through this methodically.

 

Is a controlled experiment with Affiliates / Distributors possible?

If it was we could create a control group and compare lift in control group vs. test group. Alas, one can’t just turn the relationships with affiliates or distributors on and off to create an experiment. Nor can the reach of online affiliates be restricted geographically, i.e. the search engines reveal them all regardless of where they are located in the country or world.

We have to look to either uncontrolled testing and/or panels, to find a solution

Comscore (for online panels) and Nielsen (for online or offline panels) suggest that the following type of analysis would be possible. Namely, one could split their panel population in two buckets:

  1. Used major affiliate’s sites (or distributors’ stores)
  2. Didn’t use major affiliate’s web site. (or distributors’ stores)

Then we could calculate the percentage of each bucket that ends us purchasing the manufacturer’s product. How much more likely is the group that used affiliate sites (or distributors’ stores) to purchase our product? If 20% of group 1 buy our product and only 5% of group 2 do, shouldn’t we credit the difference to the true lift from affiliates / distributors?

Watch for bias!

There is bias in these groups that we need to correct for. The people who visited an affiliate’s web site may have done so because they were already interested in making a purchase of our product. They did a search for affiliates providing the product (e.g. on comparison shopping engines) precisely to get a better deal.

In contrast, group 2 contains people who may or may not be in the market for the manufacturer’s product category.

So in order to correct for this we would have to do more. We’d need to first filter the panel to the subset that makes any purchase in the related product category at all, regardless of whether that is this manufacturer’s product or one of its competitors. Then among this group we’d apply the analysis stated above.

 

That should get us a little closer to the truth, I believe.

Crazy, how much thought and effort it takes though!

Multichannel metrics (& web analytics) are both easy and hard. This one is an example of how they are rather hard and how they require much more than just (web) analytics software.


 

P.S.: Some manufacturers will have it easier with this type of analysis, namely those where everybody in the population needs their product. Say, shampoo or  groceries or tax help.

 

P.P.S: In the offline world there is the benefit of geographic testing. So the offline marketer could compare purchase behavior in regions where there are not any stores by the manufacturer. Or they can also look at behavior based on the driving distance of individuals to the closest store.

 



Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data for tax collection
Big DataData MiningExclusive

Here’s How The UK Government Is Using Big Data For Tax Collection

6 Min Read

The enlightening, essential survival application for the iPod…

1 Min Read

Alberto’s Business Analytics Predictions for 2012

6 Min Read

With over 30 shopping-related APIs and 300+ mashups tagged…

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?