Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: XBRL: How to Save a Good Idea from a Bad Implementation
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > XBRL: How to Save a Good Idea from a Bad Implementation
Data QualityPolicy and Governance

XBRL: How to Save a Good Idea from a Bad Implementation

tkorte
tkorte
4 Min Read
SHARE

If the problems with the U.S. Health Insurance Marketplace website have taught us anything, it is that implementation problems can overshadow the good ideas underlying government initiatives. The same problem is occurring right now with the Securities and Exchange Commission’s (SEC) adoption of XBRL, and critics must take care not to reject the idea of open financial reporting standards in light of a flawed implementation.

Publicly-traded companies must disclose financial statements to the SEC on a quarterly basis.

If the problems with the U.S. Health Insurance Marketplace website have taught us anything, it is that implementation problems can overshadow the good ideas underlying government initiatives. The same problem is occurring right now with the Securities and Exchange Commission’s (SEC) adoption of XBRL, and critics must take care not to reject the idea of open financial reporting standards in light of a flawed implementation.

Publicly-traded companies must disclose financial statements to the SEC on a quarterly basis.

More Read

Image
Where in the World Does All this ESRI World Data Come from?
5 Strategies For Keeping Your Company’s Sensitive Data Secure
Big Data Accountability (Part 2)
How Big Data Can Help the Developing World Beat Poverty [VIDEO]
Tough Analytics? Watson to the Rescue

These disclosures include a wide range of variables, such as income, expenses, investments and cash flow. The SEC uses these reports to monitor activities and enforce U.S. securities laws against fraud, insider trading and other financial crimes.

In an effort to modernize these disclosures, the SEC mandated in 2009 that companies must submit their electronic filings in both plain-text as well as XBRL format. XBRL, which stands for eXtensible Business Reporting Language, would allow the SEC (along with investors, analysts and other government agencies) to conduct data-driven analysis of business filings, cutting transcription costs and enabling better fraud detection and smarter investments.

However, the SEC’s XBRL adoption has been marred by the fact that the XBRL filings are not audited like the plain-text filings. As a result, investors and analysts consider the XBRL data to be more error-prone and less reliable than plain-text filings and so they still rely on the ordinary filings. Moreover, some users, such as investors and analysts, are hesitant to switch to XBRL because they lack easy-to-use analysis tools for the data, and they do not want to incur the costs of developing ad-hoc technical solutions

The root of the problem is that the SEC does not consider the XBRL filing the authoritative filing by a company. Since the SEC was not penalizing companies for making errors in their XBRL filings, companies had no incentive to devote attention to the critically important machine-readable data releases.

These complaints can all be addressed through prudent policy revisions on the SEC’s part. First, the SEC should eliminate plain-text filings by 2015. The longer-term purpose of requiring machine-readable filings is to enable computer-aided analysis and searching, not simply a supplement to plain-text filings. This will only occur if XBRL filings are mandatory. Second, the SEC should begin immediately subjecting XBRL to the same level of auditing as plain-text files and require companies to correct XBRL errors as they are discovered. Third, the SEC should expand the machine-readable reporting requirement to include more types of filings, thereby expanding the range of data available and encouraging users to develop easy-to-use analytical tools that will in turn foster greater data usage.

Government agencies of all stripes should learn a lesson from the SEC’s XBRL difficulties: an exclusive focus on releasing data overlooks other important data policy issues such quality and adoption of standards. Otherwise, it is just “garbage in, garbage out” and the good ideas behind better use of data in government may end up going to waste.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Innovation Management

13 Min Read

Man vs. Machine Contests: Forget “Level” Playing Fields

5 Min Read

How Analytics Can Propel IT to be the New ‘It’ Group

5 Min Read
Image
AnalyticsBig DataData MiningData QualityPredictive AnalyticsSocial Data

The True Vision of Big Data in Healthcare

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?