Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What’s the Definition of ‘Big Data’? Who Cares?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > What’s the Definition of ‘Big Data’? Who Cares?
AnalyticsCommentary

What’s the Definition of ‘Big Data’? Who Cares?

BillFranks
BillFranks
6 Min Read
SHARE

It has been entertaining to see how so many people are arguing over how to define big data. There is always another nuance that can be suggested. There is always another potential exception to any rule that is offered. In the end, I don’t think the energy being put into the discussions is of much tangible value from a business perspective versus really just being an academic exercise.  Let’s explore why.

It has been entertaining to see how so many people are arguing over how to define big data. There is always another nuance that can be suggested. There is always another potential exception to any rule that is offered. In the end, I don’t think the energy being put into the discussions is of much tangible value from a business perspective versus really just being an academic exercise.  Let’s explore why.

More Read

Business Analytics vs Business Intelligence?
SAS Warranty Solutions First Look
Leveraging Social Media with Text Analytics
Two Step Cluster – Customer Segmentation in Telecom
Predictive Models are Only as Good as Their Acceptance by Decision-Makers

The goal of analytics is to leverage data to make a better business decisions.  It is all about business value.  Identifying data as “big” or not doesn’t add any business value. What organizations need to worry about is very simple: Is there a data source that isn’t currently being collected that has high potential value?  If so, then it needs to be collected and analyzed.  That’s all a business person should worry about.  They need not care about if it is big, small, or something in between.

Let’s imagine a scenario where a meeting full of business and IT people come together in a large conference room to discuss a new data source.  As part of the conversation, they reach an agreement that the new data source should (or should not) be considered big data.  What has that done to help them move the ball forward?  Nothing.  What moves the ball forward is the business team agreeing that the new data is useful and worth analyzing.  What moves the ball forward is when the IT team decides how to best make the data available based on the characteristics of the data.  Progress is made with a focus on putting the data to work, not on semantics.

With that said, once I’ve decided that a data source is important, the characteristics of that data source can impact how I go about acquiring it and feeding it into my analytic processes.  If the data is unusually big and/or unstructured, for example, I may need to leverage some techniques commonly associated with big data.  However, that is a technical implementation consideration.  The big decision as to whether the data was valuable enough to collect or not has nothing to do with what definitional bucket we might place the data source in.

Another common error is equating big data with the use of certain tools or techniques.  However, the tools and techniques often apply more broadly than just for big data.  For example, if I want to do sentiment analysis against all the social media commentary for a global organization, I may have quite a lot of data to deal with.  I’ll also need some complex text analysis tools and sentiment algorithms.  Now let’s assume I want to do a sentiment analysis on 10 comments about me personally. Guess what? I need the exact same text analysis tools and sentiment algorithms. I just don’t need them to scale to the same extent.

What the above point leads to is that much of what is being associated with “big data” is actually a function of “different data”.  Text data requires different tools and techniques.  Semi-structured data requires different handling than traditional structured data.  However, these data types require different handling for both big and small volumes of it.

For those responsible for the technical implementation of big data, the exercise of understanding what makes it different and how it might be defined does have some value.  I am not suggesting that all efforts in this area are a waste of time.  How can you develop a tool or technique to handle data if you don’t understand what it contains?  I am simply suggesting that too much emphasis has been put on the topic for audiences, such as a business user, who really don’t need to worry about it.

The next time somebody asks you how you define big data or if a certain data source should be considered to be big data, consider how you answer.  Do you really need to have that discussion?  Or do you need to change direction and focus the discussion on what the value of the data might be and how it can be leveraged for analysis? I believe you’ll usually make far more progress by going the latter direction.

To see a video version of this blog, visit my YouTube channel.

Originally published by the International Institute for Analytics

 

 

 
TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

collected data use
Artificial IntelligenceBig DataBusiness Intelligence

What To Consider When Gauging The Effectiveness Of Collected Data

6 Min Read
data catalog big data quality
Big DataData QualityPolicy and Governance

Turbo-Charge Data Scientist Productivity with a Data Catalog

8 Min Read
freight data
Big DataExclusive

Big Data Is Crucial For Freight Operator Safety During COVID-19

7 Min Read

Big Data: We Have the Technology, but Do We Have the People?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?