By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
    benefits of data analytics for financial industry
    Fascinating Changes Data Analytics Brings to Finance
    7 Min Read
    analyzing big data for its quality and value
    Use this Strategic Approach to Maximize Your Data’s Value
    6 Min Read
    data-driven seo for product pages
    6 Tips for Using Data Analytics for Product Page SEO
    11 Min Read
    big data analytics in business
    5 Ways to Utilize Data Analytics to Grow Your Business
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: 5 Reasons Organizations Use Hadoop [INFOGRAPHIC]
Share
Notification Show More
Latest News
cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
construction analytics
5 Benefits of Analytics to Manage Commercial Construction
Analytics
database compliance guide
Four Strategies For Effective Database Compliance
Data Management
Digital Security From Weaponized AI
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
Security
DevOps on cloud
Optimizing Cost with DevOps on the Cloud
Development
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > 5 Reasons Organizations Use Hadoop [INFOGRAPHIC]
HadoopSoftware

5 Reasons Organizations Use Hadoop [INFOGRAPHIC]

Datafloq
Last updated: 2014/10/23 at 8:00 AM
Datafloq
7 Min Read
SHARE
- Advertisement -

Hadoop, which as named after the elephant toy of the inventor of Hadoop, was developed because the existing data storage and processing tools appeared to be inadequate to handle all the large amounts of data that started to appear after the internet bubble. First it was Google who developed the paradigm MapReduce to be able to cope with the flow of data that came via its mission to organize the world’s information and make it universally accessible and useful. Yahoo in turn developed Hadoop in 2005 as an implementation of MapReduce.

Hadoop, which as named after the elephant toy of the inventor of Hadoop, was developed because the existing data storage and processing tools appeared to be inadequate to handle all the large amounts of data that started to appear after the internet bubble. First it was Google who developed the paradigm MapReduce to be able to cope with the flow of data that came via its mission to organize the world’s information and make it universally accessible and useful. Yahoo in turn developed Hadoop in 2005 as an implementation of MapReduce. It was released as an open source tool in 2007 under the Apache license.

- Advertisement -

Over the years, Hadoop has converted into an operating system at a very large scale especially focused on distributed and parallel processing of the vast amounts of data created nowadays. As is with any ‘normal’ operating system, Hadoop consists of a file system, is able to write programs, can manage distributing those programs and return the results afterwards.

Hadoop supports data-intensive distributed applications that can run simultaneously on large clusters of normal, commodity, hardware. It is licensed under the Apache v2 license. A Hadoop network is reliable and extremely scalable and it can be used to query massive data sets. Hadoop is written in the Java programming language, meaning it can run on any platform, and is used by a global community of distributors and big data technology vendors who have built layers on top of Hadoop.

More Read

use AI to automate linkedin messaging

Implementing AI to Automate LinkedIn Messaging

Cloud Technology is the Future of Medical Billing Software
Strategies to Make Better Profits for CPAs During Tax Season
Comparing DynamoDB and MongoDB for Big Data Management
Cloud Technology Helps Students Earn Higher SAT Scores

The feature that makes Hadoop so useful is that the Hadoop Distributed File System (HDFS). This is the storage system of Hadoop that is able to break down the data that it processes into smaller pieces, which are called blocks. These blocks are subsequently distributed throughout a cluster. This distributing of the data allows the map and reduce functions to be executed on smaller subsets instead of on one large data set. This increase efficiency, processing time and it enable the scalability necessary for processing vast amounts of data.

MapReduce is a software framework and model that can process and retrieve the vast amounts of data stored in parallel on the Hadoop system. The MapReduce libraries have been written in many programming languages and it therefore can work with all of them. MapReduce can work with structured and unstructured data.

MapReduce works in two steps. The first step is the “Map-phase”, which divides the data into smaller subsets and distributes those subsets over the different nodes in a cluster. Nodes within the system can do this again, resulting in a multi-level tree structure that divides the data in ever-smaller subsets. At those nodes, the data is processed and the answer is passed back to the “master node”. The second step is the “Reduce-phase”. The master node collects all the returned data and combines them into some sort of output that can be used again. The MapReduce framework manages all the various tasks in parallel and across the system and forms the heart of Hadoop.

- Advertisement -

With the combination of these technologies, massive amounts of data can be easily stored, processed and analyzed in a fraction of a second. In the past years, Hadoop has proven very successful for the Big Data ecosystem and it looks like it this will remain in the future. With the development of Hadoop 2.0, it now uses an entirely new job-processing framework which is called YARN. YARN stands for Yet Another Resource Negotiator and this is the module that manages the computational resources, again in clusters, for application scheduling. YARN enables multiple data processing engines such as interactive SQL, real-time streaming, data science and batch processing to handle data stored in a single platform, creating an entirely new approach to analytics.

Hadoop is a powerful tool and since 2005, over 25% organizations currently use Hadoop to manage their data, up from 10% in 2012. There are several reasons why organizations use Hadoop, being:

  1. Low cost;
  2. Computing power;
  3. Scalability;
  4. Storage flexibility;
  5. Data protection.

It is being used in almost any industry ranging from retail to government to finance. The below infographic, which as created by Solix, offers a more in-depth on Hadoop along with some interesting predictions.

 

I really appreciate that you are reading my post. I am a regular blogger on the topic of Big Data and how organizations should develop a Big Data Strategy. If you wish to read more on these topics, then please click ‘Follow’ or connect with me viaTwitter or Facebook.

- Advertisement -

You might also be interested in my book: Think Bigger – Developing a Successful Big Data Strategy for Your Business.

This article originally appeared on Datafloq. 

Datafloq October 23, 2014
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
- Advertisement -

Follow us on Facebook

Latest News

cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
construction analytics
5 Benefits of Analytics to Manage Commercial Construction
Analytics
database compliance guide
Four Strategies For Effective Database Compliance
Data Management
Digital Security From Weaponized AI
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

use AI to automate linkedin messaging
Artificial Intelligence

Implementing AI to Automate LinkedIn Messaging

10 Min Read
cloud technology benefits for medical billing
Cloud Computing

Cloud Technology is the Future of Medical Billing Software

17 Min Read
big data and accounting
Business RulesData ManagementITSoftware

Strategies to Make Better Profits for CPAs During Tax Season

10 Min Read
background. Database and networking concept
SQL

Comparing DynamoDB and MongoDB for Big Data Management

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?