Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    payment methods
    How Data Analytics Is Transforming eCommerce Payments
    10 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Top 10 Root Causes of Data Quality Problems: Part 4
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Top 10 Root Causes of Data Quality Problems: Part 4
Data MiningData QualityData Visualization

Top 10 Root Causes of Data Quality Problems: Part 4

SteveSarsfield
SteveSarsfield
4 Min Read
SHARE

Part 4 of 5: Data Flow

Part 4 of 5: Data Flow
In this continuing series, we’re looking at root causes of data quality problems and the business processes you can put in place to solve them.  In part four, we examine some of the areas involving the pervasive nature of data and how it flows to and fro within an organization.

Root Cause Number Seven: Transaction Transition

More and more data is exchanged between systems through real-time (or near real-time) interfaces. As soon as the data enters one database, it triggers procedures necessary to send transactions to other downstream databases. The advantage is immediate propagation of data to all relevant databases.

However, what happens when transactions go awry? A malfunctioning system could cause problems with downstream business applications.  In fact, even a small data model change could cause issues.

Root Cause Attack Plan

More Read

The Commoditization of Analytics
Findability Inside the Firewall – Still Trying to Find the Information We Need
Top 14 Business Intelligence predictions for 2012
Stuck in First Gear
What Does Data Quality Technology Want?
  • Schema Checks – Employ schema checks in your job streams to make sure your real-time applications are producing consistent data.  Schema checks will do basic testing to make sure your data is complete and formatted correctly before loading.
  • Real-time Data Monitoring – One level beyond schema checks is to proactively monitor data with profiling and data monitoring tools.  Tools like the Talend Data Quality Portal and others will ensure the data contains the right kind of information.  For example, if your part numbers are always a certain shape and length, and contain a finite set of values, any variation on that attribute can be monitored. When variations occur, the monitoring software can notify you.


Root Cause Number Eight: Metadata Metamorphosis

Metadata repository should be able to be shared by multiple projects, with audit trail maintained on usage and access.  For example, your company might have part numbers and descriptions that are universal to CRM, billing, ERP systems, and so on.  When a part number becomes obsolete in the ERP system, the CRM system should know. Metadata changes and needs to be shared.

In theory, documenting the complete picture of what is going on in the database and how various processes are interrelated would allow you to completely mitigate the problem. Sharing the descriptions and part numbers among all applicable applications needs to happen. To get started, you could then analyze the data quality implications of any changes in code, processes, data structure, or data collection procedures and thus eliminate unexpected data errors. In practice, this is a huge task.

Root Cause Attack Plan

  • Predefined Data Models – Many industries now have basic definitions of what should be in any given set of data.  For example, the automotive industry follows certain ISO 8000 standards.  The energy industry follows Petroleum Industry Data Exchange standards or PIDX.  Look for a data model in your industry to help.
  • Agile Data Management – Data governance is achieved by starting small and building out a process that first fixes the most important problems from a business perspective. You can leverage agile solutions to share metadata and set up optional processes across the enterprise.

This post is an excerpt from a white paper available here. My final post on this subject in the days ahead.

Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Analytics Big Data Exclusive
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Harnessing Collective Intelligence in Decision Making through Big Data Analytics

27 Min Read

3 Big Data Myths for Enterprises

5 Min Read

Isn’t In-database processing old news yet?

8 Min Read

Predictive Analytics: 8 Things to Keep in Mind (Part 1)

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?