Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Strained Data Science Analogy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > A Strained Data Science Analogy
Data Management

A Strained Data Science Analogy

DavidMSmith
DavidMSmith
3 Min Read
SHARE

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores.

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores. He likens data scientists to the icemen of the olden days, keen to provide a handcrafted service instead of the newfangled automated solution: 

I don’t want no iceman
I’m gonna get me a Frigidaire …
I don’t want nobody
Who’s always hangin’ around.

If you’ve been following my writings about data science on this blog or in my webinar on the Rise of Data Science, you’ll know I find this viewpoint to be total bunk. (So does Melinda Thielbar, who offers an excellent critique of Rivera’s post from the perspective of a practicing data scientist.) First, Data Science definitely isn’t a management process, and it’s certainly not a fad: statistical analysis, one of the three components of Data Science, has been used in companies for more than 100 years, and the advent of Big Data and all of its applications has only solidified its importance in recent years. Secondly, acting as a gatekeeper to data is the antithesis of Data Science: a data scientist’s main focus should be on liberating data by creating data apps that provide on-demand access to data analysis, while implementing the unique expertise that data scientists provide. 

There’s much more I could say about this, but my thoughts are captured in detail in this podcast at the IBM Big Data Hub. In my conversation with David Pittman we also cover whether Data Science is “sexy” (note: there’s no such thing as a calendar on the theme of “Guys and Gals of Data Science”), and how the R language is an ideal platform for creating data apps. You can listen to the podcast at the link below.

More Read

Spreadsheets: Use Them, Don’t Abuse Them
Attention Retailers: How to Avoid Being Attacked
5 Kinds of Business Analysis Techniques Every Executive Should Know
HIPAA Violations Cost Health Insurer $1.7 Million: Lessons Learned
Was Edison “Agile”? Extracting New Value from Old Techniques

IBM Big Data Hub: Rebuffing “Buyer Beware” Attitude on Data Science

TAGGED:Data ScienceRay Rivera
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

agenic ai
How Businesses Are Using AI to Make Smarter, Faster Decisions
Artificial Intelligence Exclusive
accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive
ai and law enforcement
Forensic AI Technology is Doing Wonders for Law Enforcement
Artificial Intelligence Exclusive
langgraph and genai
LangGraph Orchestrator Agents: Streamlining AI Workflow Automation
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

New Research on Big Data

6 Min Read
data science solve cybersecurity challenges
AnalyticsBest PracticesBig DataData ManagementData ScienceExclusiveITPredictive AnalyticsRisk ManagementSecurity

Can Advancements In Data Science Address The Challenges To Cybersecurity?

7 Min Read
data science for android apps
Big DataData ScienceExclusive

Experts Reveal Data Science Behind Five Popular Android Apps

7 Min Read
business intelligence and data science for retail
Big DataBusiness IntelligenceBusiness RulesData ScienceExclusive

Trends In Business Intelligence And Data Science For Retail

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?