Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Strained Data Science Analogy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > A Strained Data Science Analogy
Data Management

A Strained Data Science Analogy

DavidMSmith
DavidMSmith
3 Min Read
SHARE

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores.

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores. He likens data scientists to the icemen of the olden days, keen to provide a handcrafted service instead of the newfangled automated solution: 

I don’t want no iceman
I’m gonna get me a Frigidaire …
I don’t want nobody
Who’s always hangin’ around.

If you’ve been following my writings about data science on this blog or in my webinar on the Rise of Data Science, you’ll know I find this viewpoint to be total bunk. (So does Melinda Thielbar, who offers an excellent critique of Rivera’s post from the perspective of a practicing data scientist.) First, Data Science definitely isn’t a management process, and it’s certainly not a fad: statistical analysis, one of the three components of Data Science, has been used in companies for more than 100 years, and the advent of Big Data and all of its applications has only solidified its importance in recent years. Secondly, acting as a gatekeeper to data is the antithesis of Data Science: a data scientist’s main focus should be on liberating data by creating data apps that provide on-demand access to data analysis, while implementing the unique expertise that data scientists provide. 

There’s much more I could say about this, but my thoughts are captured in detail in this podcast at the IBM Big Data Hub. In my conversation with David Pittman we also cover whether Data Science is “sexy” (note: there’s no such thing as a calendar on the theme of “Guys and Gals of Data Science”), and how the R language is an ideal platform for creating data apps. You can listen to the podcast at the link below.

More Read

data encryption for data security
How to Reduce Sensitive Data Exposure for Your Enterprise
Big Data Analytics a Key Enabler for Social CRM – Airlines Case Study
Next Gen Research Ad Measurement
Globoforce Engages Employees with Social Recognition
VisionWaves: The Case for a Global Business Cockpit

IBM Big Data Hub: Rebuffing “Buyer Beware” Attitude on Data Science

TAGGED:Data ScienceRay Rivera
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Using Data Science on TripAdvisor Reviews (Part 1)

6 Min Read
big data analytics trends 2020
AnalyticsBig DataBusiness IntelligenceCloud ComputingExclusiveMachine LearningPredictive Analytics

6 Data And Analytics Trends To Prepare For In 2020

10 Min Read
data scientists
Big DataData Science

4 Reasons All Data Scientists Should Be Skilled in Psychology

6 Min Read

Mok Oh: To Do Data Science, You Need a Team of Specialists

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?