Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Strained Data Science Analogy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > A Strained Data Science Analogy
Data Management

A Strained Data Science Analogy

DavidMSmith
DavidMSmith
3 Min Read
SHARE

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores.

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores. He likens data scientists to the icemen of the olden days, keen to provide a handcrafted service instead of the newfangled automated solution: 

I don’t want no iceman
I’m gonna get me a Frigidaire …
I don’t want nobody
Who’s always hangin’ around.

If you’ve been following my writings about data science on this blog or in my webinar on the Rise of Data Science, you’ll know I find this viewpoint to be total bunk. (So does Melinda Thielbar, who offers an excellent critique of Rivera’s post from the perspective of a practicing data scientist.) First, Data Science definitely isn’t a management process, and it’s certainly not a fad: statistical analysis, one of the three components of Data Science, has been used in companies for more than 100 years, and the advent of Big Data and all of its applications has only solidified its importance in recent years. Secondly, acting as a gatekeeper to data is the antithesis of Data Science: a data scientist’s main focus should be on liberating data by creating data apps that provide on-demand access to data analysis, while implementing the unique expertise that data scientists provide. 

There’s much more I could say about this, but my thoughts are captured in detail in this podcast at the IBM Big Data Hub. In my conversation with David Pittman we also cover whether Data Science is “sexy” (note: there’s no such thing as a calendar on the theme of “Guys and Gals of Data Science”), and how the R language is an ideal platform for creating data apps. You can listen to the podcast at the link below.

More Read

big data in healthcare
Global Hospitals Embark On A Worldwide Medical Data Initiative
Even after Dyn DDoS attack, businesses shouldn’t ditch DNS providers, analyst says
Cloud Security: Vetting Applications and Cloud Providers for Compliance and Security
Quiet Revolution in Enterprise: Embracing Agile Strategy
Are New SEC Rules Enough to Prevent Another Flash Crash?

IBM Big Data Hub: Rebuffing “Buyer Beware” Attitude on Data Science

TAGGED:Data ScienceRay Rivera
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

principles of data science
Data Science

Data Science Journey Walkthrough – From Beginner to Expert

15 Min Read
benefits of data science for business intelligence
Business Intelligence

Big Data Offers Tremendous Benefits to Business Intelligence Solutions

7 Min Read
tech industry and data science
Data Science

How People from Outside of the Tech Industry are Breaking into Data Science

6 Min Read
using docker for data science
Data Science

Top Benefits of Using Docker for Data Science

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?