Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Stop Asking for Margin of Error in Polling Research
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Stop Asking for Margin of Error in Polling Research
Uncategorized

Stop Asking for Margin of Error in Polling Research

AnniePettit
AnniePettit
4 Min Read
SHARE

Just a few days ago, I moderated a webinar with four leading researchers and statisticians to discuss the use of margin of error with non-probability samples. To a lot of people, that sounds like a pretty boring topic. Really, who wants to listen to 45 minutes of people arguing about the appropriateness of a statistic?

Just a few days ago, I moderated a webinar with four leading researchers and statisticians to discuss the use of margin of error with non-probability samples. To a lot of people, that sounds like a pretty boring topic. Really, who wants to listen to 45 minutes of people arguing about the appropriateness of a statistic?

Who, you ask? Well, more than 600 marketing researchers, social researchers, and pollsters registered for that webinar. That’s as many people who would attend a large conference about far more exciting things like using Oculus Rift and the Apple Watch for marketing research purposes. What this tells me is that there is a lot of quiet grumbling going on.

I didn’t realize how contentious the issue was until I started looking for panelists. My goal was to include 4 or 5 very senior level statisticians with extensive experience using margin of error on either the academic or business side. As I approached great candidate after great candidate, a theme quickly arose among those who weren’t already booked for the same time-slot – the issue was too contentious to discuss in such a public forum. Clearly, this was a topic that had to be brought out into the open.

More Read

Are You Afraid Of Your Data Quality Solution?
Understanding Value
5 Things Your Boss Wants to Know About DaaS
Adventures in MOOC: Back to School, Part 2
The Indispensable Guide to Chart Design and Data Visualization [PART 1]

The margin of error was designed to be used when generalizing results from probability samples to the population. The point of contention is that a large proportion of marketing research, and even polling research, is not conducted with probability samples. Probability samples are theoretical – it is generally impossible to create a sampling frame that includes every single member of a population and it is impossible to force every randomly selected person to participate. Beyond that, the volume of non-sampling errors that are guaranteed to enter the process, from poorly designed questions to overly lengthy complicated surveys to poorly trained interviewers, mean that non-sampling errors could have an even greater negative impact than sampling errors do.

Any reasonably competent statistician can calculate the margin of error with numerous decimal places and attach it to any study. But that doesn’t make it right. That doesn’t make the study more valid. That doesn’t eliminate the potentially misleading effects of leading questions and skip logic errors. The margin of error, a single number, has erroneously come to embody the entire system and processes related to the quality of a study. Which it cannot do.

In spite of these issues, the media continue to demand that Margin of Error be reported. Even when it’s inappropriate and even when it’s insufficient. So to the media, I make this simple request.

Stop insisting that polling and marketing research results include the margin of error.

Sometimes, the best measure of the quality of research is how transparent your vendor is when they describe their research methodology, and the strengths and weaknesses associated with it.

 

TAGGED:polling
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?