Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Semantic Technology Makes Sense of Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Semantic Technology Makes Sense of Big Data
AnalyticsModelingText Analytics

Semantic Technology Makes Sense of Big Data

Jennifer Roberts
Jennifer Roberts
3 Min Read
SHARE

Filtering and analyzing unstructured business data has enormous potential to provide a competitive advantage to organizations. The key to realizing those benefits is actually being able to work with the data to reveal those insights whether they are from private or consumer data. Because while there are probably true valuable nuggets of actionable insights, there are also references to the company picnics littered throughout your data.

Filtering and analyzing unstructured business data has enormous potential to provide a competitive advantage to organizations. The key to realizing those benefits is actually being able to work with the data to reveal those insights whether they are from private or consumer data. Because while there are probably true valuable nuggets of actionable insights, there are also references to the company picnics littered throughout your data.

Imagine a collection of customer service chats of customers expressing a desire to switche services, based on a variety of attributes like level of customer service, broadband speed or modem/router quality, competitor deals, etc. Using a powerful language modeling technology, you can more accurately organize text based on how consumers are talking about a category, brand or product.  The resulting information can give your organization a more concrete idea of your customer’s value perspective; what they think is important.

More Read

The 7 Cs of the Cloud: A Big Data Taxonomy
Big Data Is Nothing Without Its Little Brother
The Role of Data Analytics in Football Performance
Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC
Location Intelligence: Driving Competitive Advantage in the Retail Industry

The image below displays the volume (# of conversations) associated with the following dimensions. In other words, how often customers are expressing an opinion or intention around:

  • Advertising
  • Affinity
  • Customer Service
  • Intent to Switch
  • Problem

Click image to enlarge

Now that you have content isolated for each of dimension, you can begin to drill down by data to extract the actual text for that time frame.

Click image to enlarge

Language Modeling Shows Context at Its Best

You cannot get to this point in your analysis if you are relying on brittle or cumbersome technology that requires a lot of manual tuning or that doesn’t shift as the context or language changes. Using semantic filters provides a more advanced form of language modeling that deciphers the context of the language used –  the meaning, not just what terms are present – and matches semantically similar content. This means that more robust and accurate categorization of topics is possible.

Why does content categorization matter?

Organizing on-topic content into categories that match key performance indicators can help  optimize your analysis to track important business metrics. Adding sentiment and dimension analysis elevates your analysis to a whole different level. But its the initial effort to define what your organization is wanting to track and analyze and then mapping the resulting categorization to business metrics that will make the best use of your organization’s data resources.

Click image to enlarge

TAGGED:semantic
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive
image fx (37)
Boosting SMS Marketing Efficiency with AI Automation
Exclusive
pexels pavel danilyuk 8112119
Data Analytics Is Revolutionizing Medical Credentialing
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Free as in Freebase

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?