Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Report: New Logistics Pave Road for Machine Data Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Report: New Logistics Pave Road for Machine Data Analytics
AnalyticsBig Data

Report: New Logistics Pave Road for Machine Data Analytics

Ryan Kh
Ryan Kh
5 Min Read
machine data analytics
SHARE

Machine data analytics is the process of using big data from a variety of devices to solve complex, real-world challenges. Machine data analytics can aggregate data from smartphones, websites, desktop devices and Internet servers.

Contents
  • How Brands Are Turning to Machine Data Analytics
  • Greater Efficiency is the Future of Machine Data

How Brands Are Turning to Machine Data Analytics

Machine data is expected to transform the service models of countless businesses across the world. Machine data analytics can be used in a variety of other applications, including:

  • Identifying real-time security threats and mitigating the risk of online fraud
  • Understanding customers better
  • Improving the functionality of smart homes
  • Making smart cars viable
  • Syndicating content more efficiently than ever

While machine data analytics is the future of the Internet of Things, it has failed to evolve in recent years. One of the biggest problems is that aggregating data from thousands of devices consumes many resources.

Machine data is playing an even more important role in marketing, especially since so many people use mobile devices. Marketers can collect data from mobile users and submit it to a data driven email autoresponder, which lets them carefully tailor their email messages to mobile users. Merging email and mobile marketing has helped many companies drastically improve their engagement and conversions.

More Read

10 Greatest Challenges Preventing Businesses from Capitalizing on Big Data [INFOGRAPHIC]
New Book: Handbook of Statistical Analysis and Data Mining Applications
Google+ Is After Your Friends with Big Data and Beautiful Photos
IBM Acquires Exeros Assets – What does this mean for CA Data Profiler?
Linux for busy people

A recent report may be the breakthrough big data scientists need to make machine data analytics feasible. The recent report was commissioned by Logtrust for 451 Research.

Logtrust surveyed 200 IT managers and found that 94% of them relied on data analytics to run their organizations. Slightly over half of them also used machine data, which demonstrates its benefits.

However, they have found that speed limitations have created a barrier for them.

“Nevertheless, IT managers remain frustrated by a performance gaps in current analytics platforms as they tackle more real-time data and attempt to blend it with batch and historical data analysis. The imperative, the report’s authors note, is straightforward: ‘The faster you can run some analytics on data, and subsequently respond to the findings, the greater the chance of having achieved something that adds business value…’”

The authors concluded that new logistics approaches are necessary to process and aggregate data more efficiently.

Pedro Castillo, the CEO of Logtrust, also added that in many instances, speed was far more important than scalability with many big data applications.

Logtrust, Google and other organizations are exploring new solutions to process machine data more efficiently. Google recently announced that its new machine learning chips are 15-30x faster than GPUs and CPUs.

“The conversation changed in 2013 when we projected that DNNs could become so popular that they might double computation demands on our data centers, which would be very expensive to satisfy with conventional CPUs,” the authors of Google’s paper write. “Thus, we started a high-priority project to quickly produce a custom ASIC for inference (and bought off-the-shelf GPUs for training). The goal was to improve cost-performance by 10x over GPUs.”

Using more efficient machine learning chips is important, but limiting the steps in the machine data aggregation process is even more so. Machine data is often aggregated from devices to a central repository and then accessed by other applications via Hadoop and other big data analytics tools. The process could be conducted more efficiently if crucial data was stored on other devices instead.

Of course, this isn’t feasible for all applications, especially those that require significant amounts of data. However, it could be viable for applications that rely on smaller quantities of data, where speed is a much greater priority.

As Castillo and many other experts have pointed out, brands often don’t need larger quantities of data. They often would prefer a more streamlined data aggregation process, where they can access the data they need.

Greater Efficiency is the Future of Machine Data

Brands relying on machine data have finally come to terms with their priorities. According to the Logtrust report, 51% of IT experts hope to be able to process machine data in a matter of milliseconds. Unfortunately, they haven’t come close to reaching that goal.

They are finally realizing that revising their analytics approach to focus on efficiency over quantity may be the solution.

TAGGED:machine learning
Share This Article
Facebook Pinterest LinkedIn
Share
ByRyan Kh
Follow:
Ryan Kh is an experienced blogger, digital content & social marketer. Founder of Catalyst For Business and contributor to search giants like Yahoo Finance, MSN. He is passionate about covering topics like big data, business intelligence, startups & entrepreneurship. Email: ryankh14@icloud.com

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

AI and machine learning misconceptions
Artificial IntelligenceExclusiveITMachine LearningNews

Busting the Myths of AI and Machine Learning

7 Min Read
combat low quality link spam
Big DataExclusiveMachine Learning

Google Uses Machine Learning To Combat Low Quality Link Spam

6 Min Read
machine learning help life insurance companies
Analytics

Machine Learning Transforms Life Insurance Beyond the Actuarial Process

6 Min Read
machine learning big data
AnalyticsBig DataExclusiveFeaturedMachine LearningNews

Fascinating Ways Machine Learning and Geolocation Tagging Are Intersecting

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?