Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Prototyping Cloud Analytic Applications
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Prototyping Cloud Analytic Applications
Business Intelligence

Prototyping Cloud Analytic Applications

Editor SDC
Editor SDC
4 Min Read
SHARE

Cloud computing is changing the way that companies build and deploy their analytic solutions. With cloud computing, computing is available on demand, scales elastically, and can be self-provisioned. This flexibility sometimes requires developing new analytic infrastructure and new analytic algorithms, which, in turn, requires some experimenting. This process can usually benefit from an external perspective.

Cloud computing is changing the way that companies build and deploy their analytic solutions. With cloud computing, computing is available on demand, scales elastically, and can be self-provisioned. This flexibility sometimes requires developing new analytic infrastructure and new analytic algorithms, which, in turn, requires some experimenting. This process can usually benefit from an external perspective.

The fastest way forward is to use a public cloud, external experts, and to do some quick experiments and prototyping. At this point, for many companies, there is a problem. It is quite common these days for companies to have policies that prohibit placing proprietary data, or data that contains information that can identify customers, on public clouds. Providing access to this data to third parties is also usually quite difficult.

More Read

Can Data Determine How Learning Happens
Can Data Determine How Learning Happens
“Why do CFOs and CEOs hate IT? – ERP” – Thomas Wailgum at CIO.com
Major Brands Fail to Honor Unsubscribes
AI Can Do Wonders to Improve Internal Communication
10 Ways to Gain Targeted Insights Into User Behavior

One practical approach is to replace actual data with simulated data, and, instead of using public clouds, to use instead private clouds operated by third parties. This requires using data simulators that produce realistic data. For example, large data is rarely normally distributed, but more often follows power laws or similar types of distributions.

As a reminder, a private cloud is a cloud that is used exclusively by a single organization. It may be managed by the organization or by a third party; and, it may exist on premise (an in-house private cloud) or off premise (a third-party private cloud). In contrast, in a public cloud, the cloud infrastructure is made available to the general public, or a large group, and is owned by an organization selling cloud services (a cloud service provider). In this post, we assume that private third party clouds are also single tenant clouds; that is, only one client’s data is on the cloud at a time and the cloud is sanitized between use by different clients.

In more detail, one approach for moving your analytics to clouds is:

  • use simulated data following realistic simulations, instead of actual data;
  • supplement in-house expertise with third party experts who specialize in analytics and cloud computing;
  • use third party private clouds instead of public clouds to decrease risk or perceived risk;
  • experiment with different analytic approaches and different analytic infrastructures;
  • agree on APIs up front and transfer technology by transferring code that uses these APIs.

We have found this approach works well. We would be interested in hearing your experiences.

Full disclosure: Open data operates private clouds, has developed software that provides simulated data for a variety of industries, including financial services, and provides consulting services using simulated data on private clouds so that companies can rapidly explore the use of cloud computing to develop innovative cloud computing applications, especially analytic applications.

TAGGED:cloud computing
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data tools including analytics and cloud computing
AnalyticsBig DataBusiness IntelligenceCloud ComputingData CollectionExclusive

Data Shortcuts So You Can Spend More Time Managing Your Business

5 Min Read
iot and cloud technology
Internet of Things

IoT And Cloud Integration is the Future!

6 Min Read

Lyzasoft says “power to the people” with free version

6 Min Read

5 Reasons the Cloud and Mobile Are Inevitable

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?