Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Prototyping Cloud Analytic Applications
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Prototyping Cloud Analytic Applications
Business Intelligence

Prototyping Cloud Analytic Applications

Editor SDC
Editor SDC
4 Min Read
SHARE

Cloud computing is changing the way that companies build and deploy their analytic solutions. With cloud computing, computing is available on demand, scales elastically, and can be self-provisioned. This flexibility sometimes requires developing new analytic infrastructure and new analytic algorithms, which, in turn, requires some experimenting. This process can usually benefit from an external perspective.

Cloud computing is changing the way that companies build and deploy their analytic solutions. With cloud computing, computing is available on demand, scales elastically, and can be self-provisioned. This flexibility sometimes requires developing new analytic infrastructure and new analytic algorithms, which, in turn, requires some experimenting. This process can usually benefit from an external perspective.

The fastest way forward is to use a public cloud, external experts, and to do some quick experiments and prototyping. At this point, for many companies, there is a problem. It is quite common these days for companies to have policies that prohibit placing proprietary data, or data that contains information that can identify customers, on public clouds. Providing access to this data to third parties is also usually quite difficult.

More Read

business intelligence during COVID
The Advent And Scope Of AI Marketing In 2020 And Beyond
An update on the warranty industry
Data Driven Software Buying Decisions
Business Intelligence – The Evolution of a Species
Add Branded and Non-Branded Keywords separately in Google Analytics Dashboard

One practical approach is to replace actual data with simulated data, and, instead of using public clouds, to use instead private clouds operated by third parties. This requires using data simulators that produce realistic data. For example, large data is rarely normally distributed, but more often follows power laws or similar types of distributions.

As a reminder, a private cloud is a cloud that is used exclusively by a single organization. It may be managed by the organization or by a third party; and, it may exist on premise (an in-house private cloud) or off premise (a third-party private cloud). In contrast, in a public cloud, the cloud infrastructure is made available to the general public, or a large group, and is owned by an organization selling cloud services (a cloud service provider). In this post, we assume that private third party clouds are also single tenant clouds; that is, only one client’s data is on the cloud at a time and the cloud is sanitized between use by different clients.

In more detail, one approach for moving your analytics to clouds is:

  • use simulated data following realistic simulations, instead of actual data;
  • supplement in-house expertise with third party experts who specialize in analytics and cloud computing;
  • use third party private clouds instead of public clouds to decrease risk or perceived risk;
  • experiment with different analytic approaches and different analytic infrastructures;
  • agree on APIs up front and transfer technology by transferring code that uses these APIs.

We have found this approach works well. We would be interested in hearing your experiences.

Full disclosure: Open data operates private clouds, has developed software that provides simulated data for a variety of industries, including financial services, and provides consulting services using simulated data on private clouds so that companies can rapidly explore the use of cloud computing to develop innovative cloud computing applications, especially analytic applications.

TAGGED:cloud computing
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Cloud Application versus On Premise, Myths and Realities

9 Min Read
cloud certification benefits
Cloud Computing

Cloud Computing Market Growth Drives Demand for Training

11 Min Read

How IT Services Companies can Thrive in the Age of Cloud

5 Min Read
LITEBI: Cloud Computing Business Intelligence
Business Intelligence

Business Intelligence & General Management I

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?