Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Prototyping Cloud Analytic Applications
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Prototyping Cloud Analytic Applications
Business Intelligence

Prototyping Cloud Analytic Applications

Editor SDC
Editor SDC
4 Min Read
SHARE

Cloud computing is changing the way that companies build and deploy their analytic solutions. With cloud computing, computing is available on demand, scales elastically, and can be self-provisioned. This flexibility sometimes requires developing new analytic infrastructure and new analytic algorithms, which, in turn, requires some experimenting. This process can usually benefit from an external perspective.

Cloud computing is changing the way that companies build and deploy their analytic solutions. With cloud computing, computing is available on demand, scales elastically, and can be self-provisioned. This flexibility sometimes requires developing new analytic infrastructure and new analytic algorithms, which, in turn, requires some experimenting. This process can usually benefit from an external perspective.

The fastest way forward is to use a public cloud, external experts, and to do some quick experiments and prototyping. At this point, for many companies, there is a problem. It is quite common these days for companies to have policies that prohibit placing proprietary data, or data that contains information that can identify customers, on public clouds. Providing access to this data to third parties is also usually quite difficult.

More Read

ai telehealth
AI Helps Telehealth Companies Manage Chronic Illnesses
Microsoft takes on Google and IBM in science cloud
The Role of Artificial Intelligence in Enhancing Data Security
by 2025, buildings will use more energy than any other category…
What do you get when you combine the power of SAP and Teradata?

One practical approach is to replace actual data with simulated data, and, instead of using public clouds, to use instead private clouds operated by third parties. This requires using data simulators that produce realistic data. For example, large data is rarely normally distributed, but more often follows power laws or similar types of distributions.

As a reminder, a private cloud is a cloud that is used exclusively by a single organization. It may be managed by the organization or by a third party; and, it may exist on premise (an in-house private cloud) or off premise (a third-party private cloud). In contrast, in a public cloud, the cloud infrastructure is made available to the general public, or a large group, and is owned by an organization selling cloud services (a cloud service provider). In this post, we assume that private third party clouds are also single tenant clouds; that is, only one client’s data is on the cloud at a time and the cloud is sanitized between use by different clients.

In more detail, one approach for moving your analytics to clouds is:

  • use simulated data following realistic simulations, instead of actual data;
  • supplement in-house expertise with third party experts who specialize in analytics and cloud computing;
  • use third party private clouds instead of public clouds to decrease risk or perceived risk;
  • experiment with different analytic approaches and different analytic infrastructures;
  • agree on APIs up front and transfer technology by transferring code that uses these APIs.

We have found this approach works well. We would be interested in hearing your experiences.

Full disclosure: Open data operates private clouds, has developed software that provides simulated data for a variety of industries, including financial services, and provides consulting services using simulated data on private clouds so that companies can rapidly explore the use of cloud computing to develop innovative cloud computing applications, especially analytic applications.

TAGGED:cloud computing
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

I Have a Query

2 Min Read
big data tools including analytics and cloud computing
AnalyticsBig DataBusiness IntelligenceCloud ComputingData CollectionExclusive

Data Shortcuts So You Can Spend More Time Managing Your Business

5 Min Read
cloud technology for productivity boosts
Cloud Computing

Essential Productivity Hacks in Cloud-Centric Workplaces

8 Min Read

Is Your POS Plugged To The Cloud?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?