Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Models are Only as Good as Their Acceptance by Decision-Makers
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Predictive Models are Only as Good as Their Acceptance by Decision-Makers
Predictive Analytics

Predictive Models are Only as Good as Their Acceptance by Decision-Makers

DeanAbbott
DeanAbbott
3 Min Read
SHARE

I have been reminded in the past couple weeks working with customers that in many applications of data mining and predictive analytics, unless the stakeholders of predictive models understand what the models are doing, they are utterly useless. When rules from a decision tree, no matter how statistically significant, don’t resonate with domain experts, they won’t be believed. Arguments that “the model wouldn’t have picked this rule if it wasn’t really there in the data” makes no difference when the rule doesn’t make sense.

I have been reminded in the past couple weeks working with customers that in many applications of data mining and predictive analytics, unless the stakeholders of predictive models understand what the models are doing, they are utterly useless. When rules from a decision tree, no matter how statistically significant, don’t resonate with domain experts, they won’t be believed. Arguments that “the model wouldn’t have picked this rule if it wasn’t really there in the data” makes no difference when the rule doesn’t make sense.

There is always a tradeoff in these cases between the “best” model (i.e., most accurate by some measure) and the “best understood” model (i.e., the one that gets the “ahhhs” from the domain experts). We can coerce models toward the transparent rather than the statistically significant by removing fields that perform well but don’t contribute to the story the models tell about the data.

I know what some of you are thinking: if the rule or pattern found by the model is that good, we must try to find the reason for its inclusion, make the case for it, find a surrogate meaning, or just demand it be included because it is so good! I trust the algorithms and our ability to assess if the algorithms are finding something “real” compared with those “happenstance” occurrences. But not all stakeholders share our trust, and it is our job to translate the message for them so that their confidence in the models approaches are own.

More Read

In the next five years, technology tools will help you recall,…
Analytics BS: 3 Questions to Spot It
Cyberlaw scholar Jonathan Zittrain of Harvard: Ubiquitous human…
RuleSpeak – some useful guidelines for writing rules
Analyzing Healthcare in Sweden
TAGGED:decision makers
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Business IntelligenceData MiningExclusiveInside CompaniesMarketingPredictive Analytics

We’re Not Artists: The Craft of Influencing Decision Makers

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?