Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Perils of Analysts Demanding Perfection and Precision
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > The Perils of Analysts Demanding Perfection and Precision
AnalyticsBusiness Intelligence

The Perils of Analysts Demanding Perfection and Precision

GaryCokins
GaryCokins
3 Min Read
SHARE

I refer to myself as a “ready-fire-aim” kind of guy. Although this is an exaggeration, it makes the point that I stop analyzing when the information is good enough to gain insights or make decisions.

I am an advocate of the Pareto principle that is also known as the 80–20 rule – the law of the vital few versus the trivial many. It states that for many events, roughly 80% of the effects come from 20% of the causes.

I refer to myself as a “ready-fire-aim” kind of guy. Although this is an exaggeration, it makes the point that I stop analyzing when the information is good enough to gain insights or make decisions.

More Read

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
What to look for in a new data warehouse
Big Data Bubbles Up Trouble!
Things Worth Learning From 2018 Artificial Intelligence Projects
How Natural Language Processing Makes Our Lives Easier and Improves Your Business

I am an advocate of the Pareto principle that is also known as the 80–20 rule – the law of the vital few versus the trivial many. It states that for many events, roughly 80% of the effects come from 20% of the causes.

My concern is that analysts using statistics and analytics require excessive detail, accuracy, and precision. These types of analysts are perfectionists. Too often organizations over-plan and under-execute. During the investigation phase of a problem or opportunity, they can have brain freeze.

 

Can you read this?

I can’t blveiee that I can aulaclty unsdnaterd what I am rdanieg. The phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, is it dseno’t mtaetr in what oerdr the ltteres in a word are. The olny iproamtnt tihng is that the frsit and last ltteer be in the rghit pclae. The rset can be a taotl mses and you can still raed it whotuit a pboerlm. This is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the word as a wlohe. Azanmig huh? I awlyas tghuhot slpeling was ipmorantt!

 

Time to results versus fact-based information

Today speed and agility in analysis and decision making trumps slow and deliberate study. You were able to read the paragraph above. The message here is that it is OK to make mistakes early and often when in pursuit of learning something. It is OK to start small while thinking big.

In a recent webcast broadcast by the International Institute of Analytics titled “What Makes a Great Analytic Professional” presented by Bill Franks, Chief Analytics Officer with Teradata, Bill described the characteristics of a data scientist. An important one is for analysts to not get hung up in the details. They need to quickly get to usable results.

Bill was not suggesting that the analysis be flawed, misleading, or defensible. The point is to move quickly. Act fast. When you are in the slow lane, others will pass you by.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Mobile Business Intelligence: The Pseudo Revolution

8 Min Read

If You Want Trust in Washington, Get a Database?

6 Min Read

Welcome Inside!

4 Min Read

SAS Global Forum: Is Google Analytics and SAS BI a Good Subject?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?