Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Perils of Analysts Demanding Perfection and Precision
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > The Perils of Analysts Demanding Perfection and Precision
AnalyticsBusiness Intelligence

The Perils of Analysts Demanding Perfection and Precision

GaryCokins
GaryCokins
3 Min Read
SHARE

I refer to myself as a “ready-fire-aim” kind of guy. Although this is an exaggeration, it makes the point that I stop analyzing when the information is good enough to gain insights or make decisions.

I am an advocate of the Pareto principle that is also known as the 80–20 rule – the law of the vital few versus the trivial many. It states that for many events, roughly 80% of the effects come from 20% of the causes.

I refer to myself as a “ready-fire-aim” kind of guy. Although this is an exaggeration, it makes the point that I stop analyzing when the information is good enough to gain insights or make decisions.

More Read

5 Hidden Skills for Big Data Scientists
Realize You’re a Data Company or Be Left Behind
Creating a Sentimental Social Media Analytics Strategy
Arguing for Increased Gut-feel in the Age of Analytics
SAS BI Dashboard Rocks My Google Analytics Data Analysis

I am an advocate of the Pareto principle that is also known as the 80–20 rule – the law of the vital few versus the trivial many. It states that for many events, roughly 80% of the effects come from 20% of the causes.

My concern is that analysts using statistics and analytics require excessive detail, accuracy, and precision. These types of analysts are perfectionists. Too often organizations over-plan and under-execute. During the investigation phase of a problem or opportunity, they can have brain freeze.

 

Can you read this?

I can’t blveiee that I can aulaclty unsdnaterd what I am rdanieg. The phaonmneal pweor of the hmuan mnid, aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, is it dseno’t mtaetr in what oerdr the ltteres in a word are. The olny iproamtnt tihng is that the frsit and last ltteer be in the rghit pclae. The rset can be a taotl mses and you can still raed it whotuit a pboerlm. This is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the word as a wlohe. Azanmig huh? I awlyas tghuhot slpeling was ipmorantt!

 

Time to results versus fact-based information

Today speed and agility in analysis and decision making trumps slow and deliberate study. You were able to read the paragraph above. The message here is that it is OK to make mistakes early and often when in pursuit of learning something. It is OK to start small while thinking big.

In a recent webcast broadcast by the International Institute of Analytics titled “What Makes a Great Analytic Professional” presented by Bill Franks, Chief Analytics Officer with Teradata, Bill described the characteristics of a data scientist. An important one is for analysts to not get hung up in the details. They need to quickly get to usable results.

Bill was not suggesting that the analysis be flawed, misleading, or defensible. The point is to move quickly. Act fast. When you are in the slow lane, others will pass you by.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Industry Analyst Art or Fiction: Questionable Technology Predictions

6 Min Read

Create animated graphics with R

3 Min Read

Four Essentials for Enabling Pattern-Based Strategies

10 Min Read
agenic ai
Artificial IntelligenceExclusive

How Businesses Are Using AI to Make Smarter, Faster Decisions

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?