Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Metadata versus Taxonomy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Metadata versus Taxonomy
Data Mining

Metadata versus Taxonomy

MIKE20
MIKE20
4 Min Read
SHARE

I’ve advocated for many years that Information Management should be a superset of related disciplines including data warehousing, document management, library science, enterprise search et cetera.  While this is an easy statement to make, it is really hard to execute.

I’ve advocated for many years that Information Management should be a superset of related disciplines including data warehousing, document management, library science, enterprise search et cetera.  While this is an easy statement to make, it is really hard to execute.

The problem is that practitioners from the different technical backgrounds have radically different approaches to handling information in all of its forms.  While the technologies are different (using solutions as diverse as relational databases, file systems and even physical shelving) this is not the real reason why the disciplines are so hard to bring together.

More Read

Big Data and the Call for Evidence-based Management
SAS formally announces integration with R in SAS/IML Studio
IBM Research has built a new nanoscale microscope capable of…
On the Move: Surveying your Mobile User
More Data Apps Spawned by Sandy

Practitioners coming from unstructured and structured data backgrounds use subtly different definitions of metadata and I argue that it is these differences that cause most of the angst that comes through in disparate repositories, governance and a lack of integrated business solutions.

Unstructured data came first, and its filing is primarily treated as a problem of taxonomy.  The most famous approach is, of course, the Dewey Decimal System.  When unstructured data practitioners talk of metadata they include the taxonomy and attributes of the data itself such as the author, publication date, copyright and other core attributes (best defined by Dublin Core).

Structured data practitioners have, for the past forty years, relied on relational database theory as the foundation of their information management practices.  Relational data generally includes as data, rather than definition, the key elements of people, place and time.  Such an approach is very neat, with metadata being literally data about data and being restricted to data structures and the definition of the data elements themselves.  As a result, the metadata for structured data is much more succinct.

While succinct is a good thing for computer programmers, it seldom translates well for the rest of society.  As a result, structured database metadata has seldom found its way out of technical departments within large organisations.  At the same time, the need to understand who authored a record, who it was about and how it relates to other events in a timeline remain as important as ever.  As a result, we now have “master data”.

Perhaps the solution is for all Information Management practitioners to concede that Metadata should encompass both the metadata that structured data practitioners advocate and the master data that the unstructured data practitioners have long advocated as being essential.  We just have to get over our fixation on the titles.  I’ve tried to define an approach that does this in my new book, Information-Driven Business.

Read more at MIKE2.0: The Open Source Standard for Information Management

TAGGED:metadata
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Digital Universe Study: Extracting Value from Chaos

6 Min Read

Public Information

11 Min Read

The Battle of Britain: Thought Leadership in Information Management

8 Min Read

#11: Here’s a thought…

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?