Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Managing Data Scientists
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Managing Data Scientists
Culture/Leadership

Managing Data Scientists

IstvanHajnal
IstvanHajnal
7 Min Read
Image
SHARE

ImageWith the rise of the ‘Data Scientist’, a lot has been said about the definition, role, qualifications and skills of the Data Scientist, and how to hire them. A somewhat neglected topic is how to manage data scientists. Indeed, data scientists, by their very nature, are hard to manage.

ImageWith the rise of the ‘Data Scientist’, a lot has been said about the definition, role, qualifications and skills of the Data Scientist, and how to hire them. A somewhat neglected topic is how to manage data scientists. Indeed, data scientists, by their very nature, are hard to manage.

They love to resolve problems, but those problems are not always the business problems you want them to tackle. They are ace players, but they’re not always the best team players and some of them can sometimes have difficulty in dealing with (higher) management. They can have bright ideas, but they often lose interest when it comes to implementing those ideas in a profit making activity. They will find clever solutions for you, but they don’t always excel in making sure that a structured process is place, let alone the administrative follow up that comes with it. Some of them were hired as ‘rock-stars’ and have developed an ego that goes with that…

On the other hand, they are (sometimes) the ‘heroes’ of the company so you need to deal with it, it comes with the territory, as they say. Also, very often you can’t apply the usual bag of tricks that ‘ordinary managers’ can use, simply because these tricks don’t always work with them.

More Read

IT disaster
Business Continuity and Disaster Recovery
Beyond BigData, the Shift To Decision Management w/ James Taylor
Bridging the IT and Business Terminology Chasm
Next-Generation ERP Must Take a Giant Leap
It’s in the Language We Use… Isn’t It?

If your data scientists are all well behaved in this respect, this blog post is not for you. If you have experienced the issues I described above, read on!

One of the things I picked up early on as a manager was that a good manager should help his people rather than command them. Often I found myself doing things that my reports were asking me to do rather than doing what my manager was asking me to do. Mind you that I would take the general strategy and direction from my manager or people above her/him, but to make it happen I found it often more useful to listen what people who were closer to reality were saying. I would help them to make them more efficient in achieving my goals. And my goals were generally the goals of my boss. I’ve always tried to avoid micro-management and over reliance on procedures. But I will admit that in some cases I did micromanage and I did emphasize procedures. The thing is that I only did that when a certain unit was in problems, not when it was successfully achieving its goals.

Another thing I noticed is that data scientists, but also statisticians and  some top coders, often have difficulties in accepting orders from managers who don’t have technical skills themselves. This does not mean that they would publicly disobey, but rather they would use some technical excuse to do whatever they wanted to do, knowing very well that the manager didn’t have the technical knowledge to challenge them. Coming from an IT and statistics background gave me (just enough) credibility to be taken seriously, and that gave me a head start compared to other managers.

But nonetheless, I had my share of problems managing data scientists.   
When I was working for a large market research company a few years ago, I had to work with a lot of statisticians and the like. Some of them were direct reports, some of them indirect and sometimes, horror oh horror, we were acting in a matrix organization. I believe I had some credit with them because I was able to speak the same (technical) language as they did. But still I had difficulties in making sure standard procedures and administrative follow up was done correctly. Now there are two opposite ways to react in such a situation. On the one hand, you can put all your energy in making sure the administrative procedures are followed, or, you can let go of any administrative follow up completely. The former will make it very hard for you to get your ace players on board, because they generally hate this stuff, and the latter might cause problems with higher management, might create chaos and is seldom sustainable. So, as most things in live, the truth is somewhere in the middle. But how do you prioritize?
  
When I tried to explain my vision on these things I found it useful to use the following schema:

 
This rule has helped me in focusing on the priorities by not trying to force successful people and groups in a very rigid process driven structure, but on the other hand it was also a warning for those people and groups that they could only get away with it as long as they were successful. This rule also took some of the fear out my teams that were in trouble. If they were in trouble but they followed the normal procedures, there was no reason for fear. On the contrary, I would help them in resolving the problem. I’m sure this might have led to some situations that you might call micro management, but at least it was micro management applied on disfunctional groups and it would leave the successful ones doing whatever they were doing. Essentially there’s nothing new with this rule and I guess you can’t apply it to all situation or in all industries. 
But for me, it worked. 

image: complicated data science/shutterstock

TAGGED:data scientists
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The World’s 7 Most Powerful Data Scientists

0 Min Read
data catalog big data quality
Big DataData QualityPolicy and Governance

Turbo-Charge Data Scientist Productivity with a Data Catalog

8 Min Read
predictive analytics capabilities of blockchain
AnalyticsBig DataBlockchainData ScienceExclusivePredictive Analytics

The Incredible Predictive Analytics Capabilities Of Blockchain

5 Min Read
analytical problem solving skills
AnalyticsBig DataExclusiveJobs

Here Are The Skills You Need To Work With Big Data

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?