Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: It’s time to industrialize analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > It’s time to industrialize analytics
Business IntelligenceData MiningData WarehousingExclusivePredictive Analytics

It’s time to industrialize analytics

JamesTaylor
JamesTaylor
8 Min Read
SHARE

There’s a lot of talk about advanced analytics these days – the use of data mining and predictive analytics is growing rapidly so lots of articles, books (like Tom Davenport’s latest) and blog posts are being written.

There’s a lot of talk about advanced analytics these days – the use of data mining and predictive analytics is growing rapidly so lots of articles, books (like Tom Davenport’s latest) and blog posts are being written. One of these was by Jeff Kelly over on TechTarget on Data analytics team’s needs and, while I agree with some of what was said, I am going to take issue with the idea that analytics is a cottage industry. There is a feeling that, because what analysts do is complex and hard for others to understand they should be allowed to swan around picking their own tools while being give lots of autonomy and plenty of freedom to experiment. This is, I believe, a very dangerous idea. It is time for organizations to take a stand and industrialize their advanced analytics efforts.

Data analysts really have to get over the “choose my own tool” thing. Allowing each analyst to pick their data mining or analytic tool results in lots of different tools being used. This means that common data cleansing routines or model elements are not, in fact, common. It means that any kind of collaboration between multiple analysts is problematic, because they can’t put their models into a common repository. And, most importantly, it means that operationalizing those models will be massively more complex.

This last is crucial as operationalization is key to generating business value. Modeling teams regularly find that 50-60% of the models that work, that would improve results if they were deployed, don’t make it into production. This means all that work was wasted and that business results are unnecessarily poor – bad for everyone. Organizations need to understand how you are going to get advanced analytic models into production – into operational systems, into reports, into dashboards – and need to pick modeling tools that support this. Otherwise you are just supporting academic investigation which, unless you are in fact an academic research institute, isn’t going to move the ball forward.

More Read

big data insights
Valuable Big Data Insights via Nike+ Gamification Platform
Why normalization matters with K-Means
Big Data’s Athletic Moment: Turning Sporting Arenas into Preferred Business Venues
Is Big Data the Silver Bullet for Advanced Supply Chain Analytics?
10 Powerful Benefits That IoT For SMBs Can Create

The basis for this tension between operational issues and constraining analytic tool choice is often that analyst think that they are done when the model is “right”. Many analysts seem to believe that they can declare victory and pat themselves on the back when the model is accurate, statistically valid, highly predictive etc. They will often talk about all sorts of statistical measures that “prove” the model is a good one. Yet, in fact, the only results that matter are business results. If the model is accurate but impractical to implement then it adds no business value and should, therefore, be considered a bad model. The approach discussed in the article of letting analysts have freedom to pick their own tools and, to some extent, do their own thing, can easily result in this kind of situation. One company I worked with hired someone to create an analytic group who took the traditional approach. End result was a great model that was going to take 9 months of hardcore programming to get into the company’s business. Lots of costs, lots of delay, not a lot of analytic value. Similarly, things that improve a model’s accuracy but make it harder to implement can rebound – it takes longer to get into production and that delay represents lost accuracy (most models degrade over time) and lost business value. For instance, too often analytic modelers will bring in new data sources to improve the accuracy of a model without considering the impact on implementation complexity. In theory the model is more accurate but in practice it is less valuable.

I also think that organizations need to be much more focused on directing analysts towards business problems. There is a tendency to let analysts explore the data, see what can be discovered. This can result in real breakthroughs, and most folks in the data mining/predictive analytic business have some examples of this. But organizations should not rely on this approach. Instead they should “begin with the decision in mind”. Find the decisions that are going to make a difference to business results – to the metrics that drive the organization. Then ask the analysts to look into those decisions and see what they might be able to predict that would help make better decisions. Of course you have to know what makes a decision good or bad and how a decision impacts your metrics before you focus on it. And you need your analysts to understand what is likely to be implementable – do you need something your CRM system can execute or something that can be embedded in a report, for instance. Again, think industrial not artisan.

Some other quick thoughts in this vein:

  • Sandboxes for your analysts to play in are good but they are not generally going to be in the Data Warehouse. Most Data Warehouses don’t contain the transaction level data that analysts need so they are going to need to work from extracts from production applications.
  • Centralization of analysts into a single team is a consequence of success with analytics not a precursor to it
  • In general, don’t roll your advanced analytic effort into your BI initiative as BI/DW people and analytic people tend to work quite differently. BI/DW folks think about summaries and rapid access to daily/weekly/monthly results for reporting while analytic people think about transactions, days since something happened and predicting the future. They don’t always play nicely together.
  • Grouping analytic folks by business problem and looking for business domain know-how when hiring analytic folks is a good idea. But the type of model they are developing/have developed in the past is also a good organizing principle. Neil Raden and I divided analytics into those supporting risk-centric decisions and those supporting opportunity-centric decisions, for instance.

Now perhaps you are only now getting started and think it will be OK to hire your first analyst, or contract with your first data mining consultant, without thinking about these things. It won’t be. You don’t need to industrialize your first project (obviously) but you do need to start as you mean to go on so think through this and make sure your first few projects don’t send you off in an unhelpful direction. Remember, precedent is policy unless you make sure it isn’t.

TAGGED:analytic decisionsanalyticsbusiness analyticsdata miningdecisiondecision managementpredictive analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive
image fx (37)
Boosting SMS Marketing Efficiency with AI Automation
Exclusive
pexels pavel danilyuk 8112119
Data Analytics Is Revolutionizing Medical Credentialing
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

AI in contract negotiations
Artificial IntelligenceBusiness Intelligence

How Artificial Intelligence For Contract Negotiations Impacts Companies

8 Min Read

Predictive Analytics: 8 Things to Keep in Mind (Part 4)

6 Min Read

Data Analytics and Business Outcomes: A Discussion Worth Your Time

7 Min Read

Analytics Can Answer: “Why Can’t … ?

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?