By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    football analytics
    The Role of Data Analytics in Football Performance
    9 Min Read
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Is It Time to Fire Your Data Analyst?
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Is It Time to Fire Your Data Analyst?
Uncategorized

Is It Time to Fire Your Data Analyst?

Eran Levy
Last updated: 2015/05/07 at 1:24 PM
Eran Levy
8 Min Read
SHARE

The digital revolution has not only made data more abundant; it has made it much more accessible. Previously managers would require a dedicated analyst (or IT staff) on payroll just to get a clear idea of how their company is performing in numbers. This was due to the information being difficult to extract, or requiring proprietary skills to understand and make it presentable enough for ‘data laymen’ to be able to grasp. Hence the data analyst was needed in order to help the company make sense of its data.

Contents
DIY Data Discovery for the MassesWhy You Still Need Your Data Analyst

The digital revolution has not only made data more abundant; it has made it much more accessible. Previously managers would require a dedicated analyst (or IT staff) on payroll just to get a clear idea of how their company is performing in numbers. This was due to the information being difficult to extract, or requiring proprietary skills to understand and make it presentable enough for ‘data laymen’ to be able to grasp. Hence the data analyst was needed in order to help the company make sense of its data.

However, business intelligence software has changed all of this: Suddenly, data is not the sole possession of organizational gatekeepers, or those with the authority to order reports from them. Suddenly any business executive can connect to her data, build a dashboard and see the stats that are driving the business in real-time.

So what does this mean for the data analysts? Has their job been made redundant? Or to put it in more provocative terms — is it time to fire your data analyst? Spoiler alert: the answer is no. Self-service business intelligence software lets business executives do a lot on their own: explore data, identify trends and monitor KPIs. But at the same time, the data analyst’s role has become more crucial than ever: your company needs him or her to prepare the data for analysis, as well as for more advanced statistical analysis and data modeling. For these tasks, you’re still going to need a professional on board.

More Read

data analyst

Shortage in Advanced Analytic Skills? Here’s an Indirect Approach

Big Data Scientists Are Bridge Builders
So You Want to be a Data Analyst
Predictive Analytics World New York City Conference Announces Speaker Line-Up
Analytics, Schmanalytics! How to Evaluate an Analyst

DIY Data Discovery for the Masses

First, let’s look at what BI software does let do yourself, even without any background in data analysis, statistics or computer science. These are the functions that should essentially be considered ‘plug-and-play’ in any reasonable BI software tool (on a sidenote, if you have a BI system in your company and still need IT to accomplish these tasks, well – it might be time to look for a new one):

  • Getting an overview of your business: BI software lets you see what’s going on in your organization, both from a bird’s-eye view and in detail. It gives you a single place to see all your data and use it to uncover trends and overall developments. Creating this type of report would have previously required someone who could mold the data into a useable form, but this is no longer the case.
  • Tracking KPIs: Non-technical users can monitor metrics against predefined goals in real-time, while previously the analyst or IT professional would have to perform these calculations manually.
  • Identifying strengths and weaknesses. Having one centralized repository and view of the data allows executives to understand which departments or areas within the company are performing well, and which less so, and take action accordingly in real-time.
  • Data discovery: unlike the static report, BI dashboards let you drill into the data and see it up-close and personal, as well as search for connections between different business processes. Again, this could not be accomplished previously without the help of someone who knew how to “speak” with the data and its various repositories – but as the software now does this on its own, this functionality has become part of the business user’s realm.

The fact that non-techies have the ability to perform all these tasks by themselves is no small feat, and would have seemed almost unimaginable a few years ago. However, there’s a reason we’re not seeing troves of data analysts in the unemployment lines (in fact, quite the opposite is true)…

Why You Still Need Your Data Analyst

Despite the advancements in business intelligence technology, there is no replacement for a skilled data analyst when it comes to the more heavy-duty aspects of data analysis and to truly harness the full power of the data your organization possesses. These are tasks that cannot be completely automated, such as:

  • Data preparation. Before data can be analyzed, it has to first be cleansed, integrated and normalized — especially when data is coming from multiple and highly disparate sources. While BI software should allow business users to perform simple joins without intricate knowledge of SQL, more complex source data will often require more work before it’s ready to go. The dedicated analyst, who knows the ins and outs of the data and its underlying structure, is the perfect man (or woman) for the job.
  • Managing complex data models: When dealing with Big Data, especially data that is generated not just inside your business but also from external sources, you cannot simply feed it into the system and hope for the best. You need someone to separate the wheat from the chaff and find ways to connect these vast datasets in a useful and efficient way, and here the human factor will once again come into play.
  • Advanced predictive analytics: Beyond understanding what your business has been doing so far, analyzing data can give you a hint at the possibilities the future holds. This requires knowledge of statistics, as well as an intricate familiarity with the business itself and the various factors that affect it. Modern software might be smart, but it is not nearly smart or creative enough to accomplish this without human intervention.
  • Effectively communicating results: When dealing with complex data and statistical analyses, you need to know not only how to reach the insights, but also how to communicate them in such way that they will be easily digestible and understandable to everyone in the company. The data analyst is needed to turn these complex concepts into clear presentations with actionable takeaways.

So don’t fire your data analyst just yet. In fact, you might consider giving him or her a raise – BI software will spare them the grunt work, and give them the opportunity to handle much more advanced (and interesting) tasks.

TAGGED: data analyst
Eran Levy May 7, 2015
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Shutterstock Licensed Photo - 1051059293 | Rawpixel.com
QR Codes Leverage the Benefits of Big Data in Education
Big Data
football analytics
The Role of Data Analytics in Football Performance
Analytics Big Data Exclusive
smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data analyst
AnalyticsBest PracticesBig DataBusiness IntelligenceCulture/LeadershipData ManagementITJobsPolicy and Governance

Shortage in Advanced Analytic Skills? Here’s an Indirect Approach

8 Min Read
big data scientists build bridges
AnalyticsPredictive Analytics

Big Data Scientists Are Bridge Builders

4 Min Read

So You Want to be a Data Analyst

7 Min Read

Predictive Analytics World New York City Conference Announces Speaker Line-Up

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?