Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Introduction to Data Mining
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Introduction to Data Mining
Data Mining

Introduction to Data Mining

SandroSaitta
SandroSaitta
4 Min Read
SHARE

Dear Data Mining Research readers, I wish you all an excellent year 2013! How to better start this new year than with an introduction to data mining (for non-experts)? Enjoy! Data alone is worth almost nothing. While data is increasing exponentially, people in some fields are “starving” for knowledge. In spite of this, the gap between data and knowledge may be huge. These days, the meaning of the word data is often confused with knowledge. Knowledge is obtained through the understanding of data. The amazing increase in data worldwide brings several challenges. The more the amount of data, the more difficult it is to understand. It is sometimes assumed that the increase of knowledge is proportional to the increase of data. The reason for such an assertion might be the lack of appreciation of the difference between obtaining and understanding data. Data mining is a field which is concerned with understanding data. In other words, the aim is to look for patterns in data. As this pattern may be very difficult to find, it is sometimes compared to gold mining in rivers (see Figure); gravel represents the enormous amount of data and gold nuggets are the hidden patterns to find. Data mining methods can be grouped in two main categories: supervised learning and unsupervised learning. Supervised learning can be seen as learning with a teacher that gives feedback for the learning task. This feedback is represented by a training set and consists of examples with both input and output values. It is opposed to the test set, which is the final set one want to test and that consists only of input values (the output is predicted). Patterns in data can be automatically identified, validated on existing data and then used for predictions with new data. In unsupervised learning, no feedback is given to the learning algorithm (i.e. no teacher). Particularities of this category are that trends are directly inferred from the data set, thus no output is known for a given data set. Several recent textbooks cover the data mining research area [1][2]. Data mining is usually applied to tasks such as recognition of images, characters and speech. Data mining has also been successfully applied in domains such as crime pattern detection, gene classification, email classification and collaborative filtering. We would like to finish this article by a quote highlighting the bright future of data mining: “[…] as long as the world keeps producing data of all kinds […] at an ever increasing rate, the demand for data mining will continue to grow.” [3] [1] Hand D., Mannila H. and Smyth P., Principles of Data Mining, MIT Press (2001) [2] Tan P.-N., Steinbach M. and Kumar V., Introduction to Data Mining, AddisonWesley (2006) [3] Piatetsky-Shapiro G., Data mining and knowledge discovery 1996 to 2005: overcoming the hype and moving from “university” to “business” and “analytics”, Data Mining and Knowledge Discovery, 15(1):99-105 (2007)

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Predictive Analytics and Politics – Part 1

5 Min Read

First meeting of New York UseR Group, April 2

0 Min Read
Image
AnalyticsBig DataCulture/LeadershipData MiningData WarehousingPolicy and GovernanceTransparencyWorkforce Data

4 Benefits for the Public Sector when Governments Start Using Big Data

8 Min Read

Using Big Data to Reduce Home Energy

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?