Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Importance of Scope In Data Quality Efforts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > The Importance of Scope In Data Quality Efforts
Exclusive

The Importance of Scope In Data Quality Efforts

JillDyche
JillDyche
4 Min Read
SHARE

When it comes to data quality, I fervently believe that it is destined for widespread adoption. As a concept data quality has been around for a while, but until now it’s only truly been appreciated by a group of aficionados.  But just like taco trucks, the HBO show “In Treatment,” video on demand, and Adam Lambert, data quality’s best days are actually ahead of it. 

Part of the reason data quality hasn’t yet its stride is because it remains a difficult sell. Those of us in the business intelligence and data integration communities understand that accurate and meaningful data is a business issue. And well-intentioned though they may be, IT people have gone about making the pitch the wrong way.

We—vendors,  consultants, and practitioners in the IT community…

More Read

big data
Can Big Data Eliminate Shortcomings of Team Extension Models?
In Big Data Endeavors, Don’t Neglect Softer Business Skills
Why New Email Clients Rely Heavily on the Latest Big Data Advances
Machine Learning is Invaluable for Mobile App Testing Automation
Big Data Paves The Road For A New Generation Of Investing Apps



 

When it comes to data quality, I fervently believe that it
is destined for widespread adoption. As a concept data quality has been around
for a while, but until now it’s only truly been appreciated by a group of aficionados.  But just like taco trucks, the HBO show “In
Treatment,” video on demand, and Adam Lambert, data quality’s best days are actually
ahead of it. 

Part of the reason data quality hasn’t yet its stride is
because it remains a difficult sell. Those of us in the business intelligence
and data integration communities understand that accurate and meaningful data
is a business issue. And well-intentioned though they may be, IT people have
gone about making the pitch the wrong way.

We—vendors,  consultants,
and practitioners in the IT community—blather on about data quality being a business
issue and requiring a business case and a repeatable set of processes but at
the end of the day automation remains the center of most data quality discussions.
As we try to explain the ROI of name and address correction, deterministic matching,
multi-source data profiling, and the pros and cons of the cloud, business
executives are thinking two things:

1: “Jeezus I’m
bored.”

2. “I wonder
how we would we start something like this? Where would we begin?”

In fact the topic of scope is a huge gaping hole in the data
quality conversation. As I work with clients on setting up data governance, we
often use the bad reputation of corporate data as its pretext. We always,
always talk about the boundaries of the initial data quality effort. Unless you
can circumscribe the scope of data quality, you can’t quantify its value.

In our experience, there are 5 levels of data quality
delivery that can quickly establish not only the scope of an initial data
quality effort, but also the actual duties and resources involved in the
initial project:

 


By specifying the initial scope of the data to be corrected we’re
establishing the boundaries of the effort itself. We’re also more likely to be
solving a real-life problem. Thus we make the initial win much more impactful,
thus securing stakeholder participation. Moreover where we start our data
quality effort is not necessarily where we’ll finish, so we can ensure an
incremental approach to setting up the program and its roles.

Business executives and users can consume a well-scoped
problem, especially if it makes their jobs easy or propels progress. And if we
solve it in a way that benefits the business—eliminating risk, ensuring economies
of scale, and driving revenues—we might even get budget for a data quality
tool!

TAGGED:business intelligencedata governancedata integrationdata quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Business Intelligence: Intuitive vs Cool Data Visualization and Infographics

8 Min Read

The dictatorship of the analysts

13 Min Read
ICO and GDPR
Big DataData ManagementExclusivePolicy and GovernancePrivacyRisk ManagementSecurity

Can ICO Data Awareness Campaigns Create More Trust In Crypto?

8 Min Read

Data Quality: The Reality Show?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?