Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Importance of Scope In Data Quality Efforts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > The Importance of Scope In Data Quality Efforts
Exclusive

The Importance of Scope In Data Quality Efforts

JillDyche
JillDyche
4 Min Read
SHARE

When it comes to data quality, I fervently believe that it is destined for widespread adoption. As a concept data quality has been around for a while, but until now it’s only truly been appreciated by a group of aficionados.  But just like taco trucks, the HBO show “In Treatment,” video on demand, and Adam Lambert, data quality’s best days are actually ahead of it. 

Part of the reason data quality hasn’t yet its stride is because it remains a difficult sell. Those of us in the business intelligence and data integration communities understand that accurate and meaningful data is a business issue. And well-intentioned though they may be, IT people have gone about making the pitch the wrong way.

We—vendors,  consultants, and practitioners in the IT community…

More Read

AI in languages
Will Artificial Intelligence Render Human Transcriptionists Obsolete?
Data-Centric Firms Address Athena Shortcomings with Smart Indexing
Digital data explosion highlights need for new-age Database and Business Intelligence technologies
Contrasting the Different Data Encryption Techniques for Optimal Security
Will Finance Finally Come Around To Blockchain In 2019?



 

When it comes to data quality, I fervently believe that it
is destined for widespread adoption. As a concept data quality has been around
for a while, but until now it’s only truly been appreciated by a group of aficionados.  But just like taco trucks, the HBO show “In
Treatment,” video on demand, and Adam Lambert, data quality’s best days are actually
ahead of it. 

Part of the reason data quality hasn’t yet its stride is
because it remains a difficult sell. Those of us in the business intelligence
and data integration communities understand that accurate and meaningful data
is a business issue. And well-intentioned though they may be, IT people have
gone about making the pitch the wrong way.

We—vendors,  consultants,
and practitioners in the IT community—blather on about data quality being a business
issue and requiring a business case and a repeatable set of processes but at
the end of the day automation remains the center of most data quality discussions.
As we try to explain the ROI of name and address correction, deterministic matching,
multi-source data profiling, and the pros and cons of the cloud, business
executives are thinking two things:

1: “Jeezus I’m
bored.”

2. “I wonder
how we would we start something like this? Where would we begin?”

In fact the topic of scope is a huge gaping hole in the data
quality conversation. As I work with clients on setting up data governance, we
often use the bad reputation of corporate data as its pretext. We always,
always talk about the boundaries of the initial data quality effort. Unless you
can circumscribe the scope of data quality, you can’t quantify its value.

In our experience, there are 5 levels of data quality
delivery that can quickly establish not only the scope of an initial data
quality effort, but also the actual duties and resources involved in the
initial project:

 


By specifying the initial scope of the data to be corrected we’re
establishing the boundaries of the effort itself. We’re also more likely to be
solving a real-life problem. Thus we make the initial win much more impactful,
thus securing stakeholder participation. Moreover where we start our data
quality effort is not necessarily where we’ll finish, so we can ensure an
incremental approach to setting up the program and its roles.

Business executives and users can consume a well-scoped
problem, especially if it makes their jobs easy or propels progress. And if we
solve it in a way that benefits the business—eliminating risk, ensuring economies
of scale, and driving revenues—we might even get budget for a data quality
tool!

TAGGED:business intelligencedata governancedata integrationdata quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

machine learning helping vpn security
Machine LearningNewsSecurity

Machine Learning is Moving Corporate VPN Security into The 21st Century

8 Min Read
business intelligence tools with gamification
Business Intelligence

Business Intelligence: Gamification as a Strategic Tool for Organizations

9 Min Read

Business Intelligence is available in BETA!

4 Min Read

#27: Here’s a thought…

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?