Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How to Set up a Predictive Maintenance Project that is Set for Success
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > How to Set up a Predictive Maintenance Project that is Set for Success
AnalyticsPredictive Analytics

How to Set up a Predictive Maintenance Project that is Set for Success

Predictive maintenance technology is proving to be a remarkable development for companies in countless sectors.

Sean Parker
Sean Parker
4 Min Read
predictive maintenance project
Shutterstock Photo License - By Zapp2Photo
SHARE

The predictive maintenance industry has a great impact on the life of equipment. The process aims to reduce machine downtime, enabling, for example, better maintenance planning. However, the project needs to be well developed for a good monitoring of production.

Contents
  • Essential elements for predictive maintenance in the industry
    • Understand what should be monitored
    • Select the data

According to data from the US Department of Energy, the savings generated by the application of this model reach up to 30% in maintenance costs, with a reduction of approximately 75% in downtime and up to 45% in downtime. Thus, the return on investment (ROI) can be up to 10 times the amount applied.

These numbers show some of the many benefits that predictive maintenance in the industry can bring to a business. But do you know what the steps are to implement it? Here’s how to set up your project!

Essential elements for predictive maintenance in the industry

A predictive maintenance project cannot be carried out without three essential elements for its implementation. It relies on the right predictive analytics tools that can prove to be very useful. Are they:

More Read

Image
A Revised “Promised Land” of BI
Optimal Technologies International Inc. – SMARTGRID Our Optimal…
Top 5 Data Mining Newsletters
Analytic Teams Are Rapidly Reaching Critical Mass
Three Ways to Get Your Predictive Models Deployed

Data – Information sources are essential for training the algorithms. In an ideal case, the machinery has sensors that send data in real time. In addition, maintenance and fault information is digitized. This is usually not the scenario found – it is normal for maintenance information to be made available on paper. However, it does not preclude the execution of the project: the only difference will be the inclusion of additional time for structuring the data

Machine Learning Algorithms – Each case will have an ideal algorithm. It is rare that the same algorithm is the most suitable for different cases. Thus, the customization of Machine Learning algorithms is at the heart of the implementation of a predictive maintenance system that is effective.

Industry Expertise – The structuring of data and selection of algorithms must have a strong component of expertise in the day-to-day operation. Here, the contribution of those responsible for predictive maintenance is essential. This experience must be incorporated into the system for it to be effective.

Understand what should be monitored

From machine learning, algorithms can learn new information over time, but a starting point is needed. Therefore, understanding the equipment the problem should be the beginning for predictive maintenance in the industry.

An unnecessary machine shutdown can happen for several reasons. Some are very common, while others can be more specific. A good diagnosis should allow intelligent algorithms to have access to fluids, component wear, vibration and temperature of the machines.

The last item is one of the main ones, as it acts directly on the quality of the equipment. Therefore, intelligent algorithms must accompany cold chambers, greenhouses and / or maturation chambers, according to the type of industry.

Select the data

For a proper functioning of artificial intelligence in predictive maintenance, it is necessary to have the data that will guide the algorithms. The applied technology is able to extract them from the systems, as long as the information is properly imputed.

It is necessary to have available a series of materials that enable the action of machine learning on the machines. Consider productivity graphs, history of the collection of variables, management software, communication gadgets, among other tools favorable to obtaining data.

TAGGED:machine learning applicationspredictive analyticspredictive maintenance
Share This Article
Facebook Pinterest LinkedIn
Share
BySean Parker
Sean Parker is an entrepreneur and content marketer with over 5 years of experience in SEO, Creative Writing and Digital Marketing with Rank Media. He has worked with several clients from all over the globe to offer his services in various domains with a proven track record of success.

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Accuracy not just confidence – some thoughts after attending SAS Global Forum 2009

6 Min Read

Gartner says predictive analytics are the hot BI topic.

2 Min Read

Actuate Makes Big Play with BIRT Analytics

5 Min Read

Big Data: What can an energy company teach us about data science?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?