By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: How to Deliver a Data Science Project Successfully
Share
Notification Show More
Latest News
big data mac performance
Data-Driven Tips to Optimize the Speed of Macs
News
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
Artificial Intelligence
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > How to Deliver a Data Science Project Successfully
Data Management

How to Deliver a Data Science Project Successfully

Rehan Ijaz
Last updated: 2020/04/10 at 11:34 PM
Rehan Ijaz
5 Min Read
data science and SMEs
Shutterstock Licensed Photo - By Wright Studio
SHARE

It is demanding to know where to begin once zoućve decided that, yes, you wish to dive into the fascinating world of data and AI. Just having a look at all the technologies you need to understand all the tools you’re supposed to master is enough to make you confused.

Contents
1. Understanding the business2. Gather your data3. Explore and clean your data4. Enrich your dataset5. Get predictiveIn conclusion

Well, luckily for you, creating your first data project is actually not difficult as it seems. Becoming data-powered is first and most foremost about having to learn the basic steps and following them to go from raw data to create a machine learning model, and in the end to operationalization.

Let’s jump into the following steps that will help you in successfully delivering a data science project.

1. Understanding the business

Having an understanding of the business or activity that your data project is part of is one of the major keys to ensuring its success. To motivate different participants necessary to get your project from design to creation, your project must be the answer to a clear organizational need or problem. So before you even think about the data, venture out and talk to the people in your organization whose processes you aim to improve with data.

More Read

database compliance guide

Four Strategies For Effective Database Compliance

Use this Strategic Approach to Maximize Your Data’s Value
5 Big Data Storage Solutions
AI Significantly Increases the Dangers of Social Media Hacking
Strategies to Make Better Profits for CPAs During Tax Season

Afterward, sit down and define a timeline and concrete key performance indicators.

2. Gather your data

Once you’ve figured your goal out, it’s time to start looking for your crucial data. Mixing and merging data from as many sources as possible is what defines a great project, so reach out as far as possible.

Here are a few ways to gather some data:

  1. Connect to a database: Ask your data and IT teams for the data that’s openly available, or create your private database up, and start digging through it to understand what information your company has been collecting.
  2. Use APIs: Think of the APIs to all the tools your company’s been using, and the raw data these guys have been gathering. You have to work on getting these all set up so you can use those email stats, the info your sales team put in Pipedrive or similar Salesforce, the support ticked somebody filled, etc. If you’re not an expert coder, plugins in DSS can give you lots of options to bring in your external data.

3. Explore and clean your data

Once you’ve gathered your data, it’s time to get to work on it. Start digging to see what you’ve got and how you can merge everything together to answer your original goal. Start writing notes on your first analyses, and ask questions to business and people, or the IT guys, to understand what these variables mean.

4. Enrich your dataset

Now that you’ve got somewhat clean data, it’s time to manipulate it in order to get the most value of it. You should begin by joining all your different sources and group logs to specify your data down to essential features.

An example of that is to enrich your data by creating a time-based feature like:

  • Extracting time and date components
  • Calculating variations between date columns
  • Flagging holidays of national matter

5. Get predictive

This is when the actual fun starts. Machine learning algorithms can help you go a step further into acquiring insights and predicting trends of the future. Also using a data science platform is one of the easiest methods in automating your machine learning pipeline.

By working with clustering algorithms, you’re able to create models to uncover trends in the data that were not easily seen in graphs and stats. These create groups of similar events, also known as clusters, and more or less explicitly express which feature is decisive in these results.

In conclusion

In order to successfully finish your first data project, you need to be aware that your model will never be fully “finished” – for it to remain useful and accurate, you need to constantly reevaluate, retrain it and create new features.

A data scientists’ job is never actually done, but that’s what makes working with data all the more interesting!

Rehan Ijaz March 8, 2020
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Rehan Ijaz
Follow:
Rehan is an entrepreneur, business graduate, content strategist and editor overseeing contributed content at BigdataShowcase. He is passionate about writing stuff for startups. His areas of interest include digital business strategy and strategic decision making.

Follow us on Facebook

Latest News

big data mac performance
Data-Driven Tips to Optimize the Speed of Macs
News
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
3 Ways AI Has Helped Marketers and Creative Professionals Streamline Workflows
Artificial Intelligence
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

database compliance guide
Data Management

Four Strategies For Effective Database Compliance

8 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
Data Management

5 Big Data Storage Solutions

6 Min Read
AI leads to a new range of cybersecurity risks for social media users
Artificial Intelligence

AI Significantly Increases the Dangers of Social Media Hacking

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?