Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How Google Uses R to Make Online Advertising More Effective
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > How Google Uses R to Make Online Advertising More Effective
AnalyticsR Programming Language

How Google Uses R to Make Online Advertising More Effective

DavidMSmith
DavidMSmith
4 Min Read
SHARE

At JSM 2011 today, three Google employees (amongst the more than 20 Google delegates there) gave a little insight into how statistical analysis with R yields better results for companies using Google’s various advertising products.

At JSM 2011 today, three Google employees (amongst the more than 20 Google delegates there) gave a little insight into how statistical analysis with R yields better results for companies using Google’s various advertising products.

Bill Heavlin from Google kicked off the session with a talk about conditional regression models, a statistical technique at Google used to evaluate the factors that lead to user satisfaction of Google products, such as when users are surveyed on satisfaction with search reports, or when users are asked to rate YouTube videos. Google has graciously shared the fruits of Bill’s research by publishing an open-source R package for conditional regression.

More Read

Economist or Iconomist? They Needed Analytics!
Choosing Your Business Intelligence Solution: Don’t Be Afraid of the “Smoosh-ins®”
Analytics and Hedgehogs: Lessons from the Tampa Bay Rays
Why Predictive Modelers Should be Suspicious of Statistical Tests
Perfect Information Doesn’t Equal Perfect Predictions

Next up was Tim Hesterberg from Google, who talked about how Google determines the effectiveness of display ads for its customers. When a brand-name company places a display (or banner) ad on a popular website like ESPN.com or CNN.com, it can be hard to judge its effectiveness, because a small percentage of visitors will click on a display ad. But that’s not to say that a display ad won’t affect future purchasing behavior, for example by searching for “HTC” or visiting the HTC website a couple of days after seeing a display ad for an HTC phone. Using observational data from more than 10 million web users, Google compares the search behavior of people who were exposed to the display ad (i.e. those that never visited a web page displaying the ad) to similar users who did see the ad, to figure out how many additional people visit the advertiser’s web site as a result of seeing the display ad.

Tim was very clear in pointing out that no private information from any individual web user is used to make this determination, and that several techniques are used to minimise the bias inherent in using an observational, rather than experimental, process to make the estimate of additional visitors. (For example, Google tests the uplift of irrelevant “decoy” phrases, like searching for “wool socks”, to make sure no spurious benefit is detected.) Google runs hundreds of studies each month, using R software for the statistical analysis and visualization, to ensure that its advertisers are always getting the best bang for their marketing dollar.

Finally, John Vaver from Google discussed yet another method Google uses for ad effectiveness, this time with respect to the ads that appear alongside Google searches. For advertisers who buy ads around the world, an elegant statistical trick is used to determine how spending in a geographic region drives additional benefits (as measured by goal completement, such as ordering a product or signing up for a newsletter). By temporararily turning off ads in a given region, and cycling this through all the regions covered, Google can double up on data used to determine the effectiveness of the ad: once when the ad is turned off, and again when it’s turned back on again. This information is then combined to determine the overall effectiveness in the ad. Once again, R was used for the data analysis and visualization.

Overall, the session was a fascinating insight into how advanced statistical analysis on massive data sets, and the R statistical software system, is used by Google to help marketers get the best value out of their advertising.

TAGGED:advertising
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News
edge networks in manufacturing
Edge Infrastructure Strategies for Data-Driven Manufacturers
Big Data Exclusive
data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Something Jeff Jarvis and I Agree On

5 Min Read
Image
Big Data

How Organisations Should Deal With the Big Data Knowledge Gap of Consumers

5 Min Read

Ad Industry Groups Begin New Anti-Regulatory Campaigns

4 Min Read

Discovering Analytics – A Revelation or Slow Investigation?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?