Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How BI Can Help Enterprises Overcome The Effects Of The Pandemic
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > How BI Can Help Enterprises Overcome The Effects Of The Pandemic
Business IntelligenceExclusive

How BI Can Help Enterprises Overcome The Effects Of The Pandemic

Business intelligence has become very helpful for companies trying to overcome the problems created by the pandemic.

Andrey Koptelov
Andrey Koptelov
6 Min Read
business intelligence benefits for companies trying to get through the pandemic
Shutterstock Photo License - By Vasin Lee
SHARE

It’s been almost two years since the COVID-19 pandemic started, and now we have enough information to assume that most enterprises weren’t prepared for the crisis. Although teams had vast amounts of data and powerful analytic tools at their fingertips, the pandemic still caught most organizations off guard. As a result, most enterprise executives had to cut their plans and initiatives. According to a Google-commissioned IDG survey, 55% of respondents have postponed or canceled at least one technology project.

Contents
  • Why legacy approaches to data analysis no longer work
  • Implementing BI to overcome the crisis
  • Summary

One of the main reasons for such a disruption may be the obsolescence of many traditional data management models; that’s why they have failed to predict the crisis and its consequences. Moreover, we can see that only those teams who decided to transform their data analytics models were able to make rapid and intelligent business decisions and, consequently, successfully adapt to this new business reality. According to Cognizant, nearly 70% of teams that made major or significant changes to their analytical models now make more accurate predictions, compared to 45% who preferred to leave things as they were.

At Itransition, we believe that the adoption of business intelligence (BI) can enable enterprises to transform and continually adapt to the ever-changing market conditions. In this article, we’ll take a closer look at why companies should seek new approaches to data analytics. We’ll also show how exactly enterprises can implement BI, either by their own efforts or via BI services, to pass through the crisis with minimal negative impact on their operations.

Why legacy approaches to data analysis no longer work

To begin with, we should understand why exactly the legacy data analytics approaches may be considered ineffective. The thing is, previously data analytics was based on models that perpetually extended into the future; unfortunately, most of these models have become obsolete in today’s circumstances.

More Read

Demographics Meet Analytics: An Interview with comScore CMO Linda Abraham
Appreciate the Profound
IBM Acquires Exeros Assets – What does this mean for CA Data Profiler?
How Real-Time Analytics Can Help Assess ROI Of Toll-Free Call Support
How Big Data Analytics Reveal Your Most Intimate Secrets

Before the pandemic, enterprise managers lived in the illusion that all future events could be predicted. Based on this assumption, specialists relied on false predictive data models that could only reflect a simplified picture of the possible future. In this paradigm, any minor deviations in data (which, in fact, could predict something) could simply be ignored or perceived as exceptions.

Thus, data analysts began to tailor the data to their usual models of reality instead of adequately assessing change and its impact. Finally, this has led to a disconnection between data sets and analytics itself, leaving many enterprises unarmed in the face of a real crisis.

So, can enterprise managers do something to avoid falling into this trap again in the future? Yes, they can implement BI to enable rapid, real-time data analytics; thus, teams become able to experiment and continuously adapt to market changes caused by the pandemic.

Implementing BI to overcome the crisis

Enterprise managers looking to leverage or improve their existing BI solutions should conduct an in-depth assessment of existing data environments and draw up a detailed strategy to improve the effectiveness of corporate analytics models. To help our clients speed up this process, our company has developed an emergency BI package for enterprises that are passing through social and economic disruptions (just like the present coronavirus crisis).

This approach, which we call reactive data analytics, allows teams to quickly test and validate data-based hypotheses via the HADI (Hypothesis-Action-Data-Insight) cycle. You can use our approach or develop a similar one to swiftly transform your data processing strategy, define new data points and data gathering routes, and continuously adapt your analytics to changing market conditions.

• Hypothesis definition

To start with, a team needs to formulate hypotheses based on the goals and business requirements.

• Insight analytics

At this stage, a team needs to analyze the gathered data and data management processes to create an appropriate environment for testing their hypotheses.

• Action points

After analyzing the testing results, a team needs to determine a set of specific actions that have to be taken to obtain the data needed for achieving the team’s business goals.

• A strategy-driven MVP

Based on the previous steps, a team comes up with a new data analytics strategy and develops an MVP to achieve visible and measurable results.

Summary

The pandemic has highlighted that the majority of traditional data analytics models have become obsolete, and enterprises can no longer rely on them to predict and manage crises. To be able to adapt to constantly changing market conditions throughout the coronavirus crisis, teams should implement or improve their existing BI solutions. In particular, enterprise managers can utilize the HADI concept to implement reactive analytics; thus, they can analyze data in real time and make more rapid and reasonable business decisions.

TAGGED:analytics in businessbusiness analyticsbusiness intelligence
Share This Article
Facebook Pinterest LinkedIn
Share
ByAndrey Koptelov
Follow:
Andrey Koptelov is an Innovation Analyst at Itransition, a custom software development company headquartered in Denver. With a profound experience in IT, he writes about new disruptive technologies and innovations in artificial intelligence and machine learning.

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The ‘Big Data’ Buzz – Revolution or Evolution?

6 Min Read
virtual assistant and big data
AnalyticsBig Data

How Virtual Assistants Use Data Analytics To Save Clients Money

8 Min Read
BI decision making guide
Big DataBusiness IntelligenceExclusive

Why It’s So Hard to Fight Instinct vs. Data in BI Decision-Making

9 Min Read

Need for Speed

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?