Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Hadoop in the Big Data Stack
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Hadoop in the Big Data Stack
Big DataHadoopSoftware

Hadoop in the Big Data Stack

RadhikaAtEmcien
RadhikaAtEmcien
3 Min Read
Hadoop
SHARE

HadoopWhat is Hadoop? It’s another wacky name for an open-source software project, but Hadoop was also a significant advancement in the way that companies, governments, and organizations can collect, store, and process data.

HadoopWhat is Hadoop? It’s another wacky name for an open-source software project, but Hadoop was also a significant advancement in the way that companies, governments, and organizations can collect, store, and process data. Companies like Cloudera, Hortonworks, and others have emerged to deliver professional level, Hadoop-based data solutions for the enterprise, while many organizations have built successful Hadoop implementations on their own.

Where the traditional model for data storage put data in one container and processing occurred elsewhere, Hadoop and other distributed file systems moved the storage and computing to a group of connected machines, often simply off the shelf computing power. One Big Data Week panelist even dubbed his first Hadoop project, cobbled together from existing equipment, ‘Frankendoop’ (That same panelist also gave us the term ‘Big Data Landfill’, but more on that later). By combining storage and analysis, Hadoop has created a more flexible, if slower, platform for moving and manipulating data. By spreading storage and analysis across machines Hadoop also spreads the workload, turning large jobs into many smaller jobs and performing certain jobs much faster.

This transition of data storage and processing power to what’s called commodity hardware did two things:

More Read

Image
Game-Changing Real-time Uses for Apache Spark
And The Verdict Is…Targeted Mobile Delivery!
Data Warehousing and Data Science
The Role Of Big Data Marketing In End-To-End App Development
How to Secure Federal Data in the Cloud
  • made it incredibly easy to expand storage capacity at very little cost, and
  • removed the very real barriers to data access that exist with a traditional enterprise data warehouse.

Now the flexibility of volume and the types of data collected begins to match the requirements of real business use cases. Where the data warehouse required careful data management, Hadoop’s approach allows for frequent data dumps, giving organizations the ability to treat data storage however they want.

And that’s where the Big Data Landfill comes from. While the greater Apache Hadoop project includes a number of analysis tools, and vendors like Cloudera offer their own tools promising ease of use and additional functionality over the open source alternatives, most Hadoop initiatives function primarily as bulk storage. Hadoop is becoming the new de facto storage for Big Data, putting them in the center of the standard big data project.

While few are predicting that Hadoop and other flexible distributed file systems will completely replace traditional data storage, the momentum, community support, and open-source nature of the Hadoop project mean that it will likely continue to grow more entangled in the Big Data stack. With that market growth, new technologies are already emerging to take advantage of the distributed nature of Hadoop and the possibilities of effective data analysis.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Face Tracking an avatar! (via KevinAires)

1 Min Read

Freakonomics and Your Data

6 Min Read

Who owns Master Data in your company?

5 Min Read

Decision Management and software development III – DSLs

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?