Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 3 Ways GPU Databases are Transforming Financial Services
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > 3 Ways GPU Databases are Transforming Financial Services
AnalyticsComputingData ManagementData WarehousingHardwareIT

3 Ways GPU Databases are Transforming Financial Services

Mark Johnson
Mark Johnson
4 Min Read
GPU databases
SHARE

In the financial services industry, there’s no such thing as too fast.

Contents
  • 1. Risk Assessment
  • 2. Fraud Reduction
  • 3. Faster, Better Trades

With the performance-doubling pace of Moore’s law finally coming to an end, graphical processing unit coprocessors are stepping in to deliver the boost that financial professionals need to handle ever more complex operations. GPU-accelerated computers are now being built with thousands of coprocessors, enabling multiple tasks to be executed simultaneously. These have transformative applications in the demanding worlds of trading, risk assessment, and portfolio analysis. Here are three ways GPU-accelerated processors and databases are changing the financial services industry.

1. Risk Assessment

Calculating risk is at the heart of every financial services business, from stock trading to insurance. The task of calculating risk scores involves large data sets and complex algorithms. It’s so CPU-intensive that risk assessment is typically done in batch overnight.

GPU databases cut risk aggregation times from hours to seconds. Datasets can be shared and processed in parallel, with the results combined at the CPU level. This enables insurance companies to quote rates instantly over the phone rather than the next day. Portfolio analysts can assess the risk of a basket of stocks while sitting across the table from the customer instead of scheduling another meeting. Traders can assess the impact of a news event on stock prices and move ahead of the market. Any financial services organization that relies upon speed will see competitive advantage from faster calculation of risk.

More Read

Data Lake Debate
The Data Lake Debate: The Final Word from Negative
The Data Analytics of Santa Claus
6 reasons why your business cannot succeed without predictive analytics
A Quick Fix for Precise Positions?
Does Data Visualization Improve the World? – Tech@State Question Asks for Answers

2. Fraud Reduction

Credit card fraud is a $16.3 billion problem annually in the United States. Harder to quantify is the loss merchants take by declining transactions that should be approved. Some GPU databases can dramatically reduce the scope of both problems.

One of the principal drivers behind credit card fraud is that banks and merchants are under pressure to make split-second decisions in order to minimize customer wait times. However, the diverse and high-cardinality datasets typically needed to assess risk are hard to index and be processed in real-time.

GPU databases provide enough brute force that indexing is less important. They can distribute algorithms across multiple nodes and processors to find anomalies faster and to deliver more reliable decisions in the same or less time. Because the parallelized processing architecture enables near-linear scalability, the quality of decision improves when GPUs are applied to the task. Machine learning algorithms make computers “smarter” the more transactions they process, further trimming response times.

3. Faster, Better Trades

In stock trading, milliseconds count. Decisions hinge upon computers combing through vast amounts of historical data and applying mathematical models to compare past trends to current pricing patterns. With GPU in-memory databases, trading companies can load all their historical data into memory and process it in parallel. Some GPU databases are optimized for machine learning, which enables algorithms to detect patterns in data that humans wouldn’t see. They’re also ideally suited to processing streaming data. The combination of these features enables traders to apply calculations to live pricing information, resulting in near-real-time decision-making and more confident trades.

GPU databases combine the power of machine learning, real-time data ingestion, parallel processing, and nearly unlimited scalability to change the rules of financial services.

TAGGED:data analysisGPU database
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Healthcare and Data Incentives

4 Min Read
does big data cause deconsolidation of the cloud market
Big DataCloud ComputingExclusive

Does Big Data Cause Deconsolidation Of The Cloud Market?

5 Min Read
data science and python
Big DataBusiness Intelligence

Why Choosing Python For Data Science Is An Important Move

11 Min Read
AI for industry improvements
AnalyticsArtificial IntelligenceBusiness IntelligenceData Management

3 Ways AI In The Business World Can Lead To Industry Improvement

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?