Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Good Business Objective Beats a Good Algorithm
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > A Good Business Objective Beats a Good Algorithm
AnalyticsBig Data

A Good Business Objective Beats a Good Algorithm

DeanAbbott
DeanAbbott
5 Min Read
Image
SHARE

ImagePredictive Modeling competitions, once the arena for a few data mining conferences, has now become big business. Kaggle (kaggle.com) is perhaps the most well-known forum for modeling competitions, using a crowd-sourcing mentality: if more people try to solve a problem, the likelihood that someone will create an excellent solution to that problem increases.

ImagePredictive Modeling competitions, once the arena for a few data mining conferences, has now become big business. Kaggle (kaggle.com) is perhaps the most well-known forum for modeling competitions, using a crowd-sourcing mentality: if more people try to solve a problem, the likelihood that someone will create an excellent solution to that problem increases.

The participants, and there have been 10s of thousands of participants since their 2011 beginning, sometimes have no predictive modeling background and sometimes an extensive data science background. Some very clever algorithms and solutions have been developed with, on some occasions, ground-breaking results

One conclusion to draw from these competitions is that what we need in the predictive analytics space is more data scientists with different, innovative ideas for solving problems, and perhaps more in-depth training of data scientists so they can create these innovative solutions. After all, the Netflix prize winner created a solution that was an ensemble of model ensembles, comprised of hundreds of models (not a Kaggle competition, but one created by and for Netflix).

More Read

future of AI - human powered data
The Future of AI: High Quality, Human Powered Data
The N-gram and the Book “Uncharted: Big Data as a Lens on Human Culture”
5 Ways Business Data Is Changing How People View Green Energy
Data Analytics Can Help with REIT Investing
Social Business and Digital Strategy

This idea of the importance of machine learning expertise was the topic of a Strata conference debate in 2012, tackling the question, “which is more important, domain expertise or machine learning expertise”, or the way it was phrased for the debate, “who should your first hire be: a domain expert or data scientist?”

The conclusion of the majority at the Strata conference was the machine learning is more important, but even the moderator, Mark Driscoll, concluded the following,

“Could you currently prepare your data for a Kaggle competition?  If so, then hire a machine learner.  If not, hire a data scientist who has the domain expertise and the data hacking skills to get you there.” (http://medriscoll.com/post/18784448854/the-data-science-debate-domain-expertise-or-machine)

The point is that defining the competition objectives and the data needed to solve the problem is critically important. Non-domain experts, the data scientists, can not ever hope to understand the domain well enough to determine what the most effective question to answer would be, where to find the data to build a modeling data set, what the target variable should be, and how one should assess which model is best. These are business domain specific.

Even companies building the same kinds of models, let’s say customer retention or churn, will approach them differently depending on the kind of business, the lead time needed to act on potential churners, and the metrics for churn that relate to ROI for that company. I’ve build models for companies in the same domain area that took very different approaches; even though I had some domain experience from customer 1, that didn’t translate into developing business objectives well for company 2.

It’s the partnership that matters. I often think of these partnerships within an organization as the three-legged stool, all of which are needed for the modeling project to succeed: a business stakeholder who understands what business objectives matter to the company and how to articulate them, IT staff who know where the data is, what it means, and how to access it, and the analysts who know how to take the data and the business objectives and translate them into modeling objectives that address the business problem. Without all three, projects fail. We modelers could build the best models in the world that solve the wrong problem exceedingly well!

image: algorithm/shutterstock

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

online data
Big Data

Understanding the Different Types of Online Data for Your Data Strategy

11 Min Read

An Analysis of the R-help Mailing List

3 Min Read

Free BI for Higher Ed

5 Min Read

Analytics at Twitter

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?