Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Forecasting: Evaluation Criteria
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Forecasting: Evaluation Criteria
Predictive Analytics

Forecasting: Evaluation Criteria

SandroSaitta
SandroSaitta
2 Min Read
SHARE

To continue our series on forecasting, let’s discuss one of the varying factors: the evaluation criteria. In classification, the percentage of accuracy is often used. It is obvious and easy to interpret. In the case of regression (e.g. forecasting), this is more complex.

To continue our series on forecasting, let’s discuss one of the varying factors: the evaluation criteria. In classification, the percentage of accuracy is often used. It is obvious and easy to interpret. In the case of regression (e.g. forecasting), this is more complex.

Whatever the application and the prediction method used, at one point, performances need to be evaluated. One motivation to evaluate results is to choose the most appropriate forecasting algorithm. Another one is to avoid overfitting. Thus, choosing the right criterion for your problem is a key step. In this post, we will focus on three accuracy measures.

The Root Mean Square Error (RMSE) is certainly the most used measure. It is mainly due to its simplicity and usage in other domains. Its equation is given below:

More Read

Welcome CRM blog radio listeners!
The Institute of Warranty Chain Management
Gapminder: Animating the World’s Data
Who cares about your data?
5 Ways Predictive Analytics Cuts Enterprise Risk

forRMSE
The main drawback of RMSE is to be scale dependent. It is thus not possible to compare two different time series. The second one is the Mean Absolute Percentage Error (MAPE). It is scale independent:

forMAPE
Its main issue is to be undefined when the denominator is null. This may happen often with intermittent data. The third error measure is the Mean Absolute Scaled Error (MASE). The naïve forecast (last value) can be used as the denominator:

forMASE
The measure is scale independent and if below 1, better than naïve forecast (a good benchmark).

What error measure do you use and why? Post a comment to share your opinion.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBig DataBusiness IntelligencePredictive Analytics

Are You Ready For Artificially-Intelligent Enterprise Applications?

5 Min Read
Image
AnalyticsBig DataBusiness IntelligenceCloud ComputingDecision ManagementExclusiveHadoopITJobsPredictive AnalyticsSocial DataSoftwareWorkforce Data

Big Data Warning: There Will Be Many Job Casualties!

11 Min Read

Predictive Analytics Spotlight from IBM

5 Min Read

It’s time to industrialize analytics

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?