By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Difference Between Business Intelligence and Real Data Science
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > The Difference Between Business Intelligence and Real Data Science
Big Data

The Difference Between Business Intelligence and Real Data Science

briggpatten
Last updated: 2022/09/20 at 9:49 PM
briggpatten
6 Min Read
data science company
Shutterstock Licensed Photo - By VZ_Art | stock vector ID: 1854735235
SHARE

Cloud computing and other technological advances have made organizations focus more on the future rather than analyze the reports of past data. To gain a competitive business advantage, companies have started combining and transforming data, which forms part of the real data science.

At the same time, they are also carrying out Business Intelligence (BI) activities, such as creating charts, reports or graphs and using the data. Although there are great differences between the two sets of activities, they are equally important and complement each other well.

Cloud computing and other technological advances have made organizations focus more on the future rather than analyze the reports of past data. To gain a competitive business advantage, companies have started combining and transforming data, which forms part of the real data science.

At the same time, they are also carrying out Business Intelligence (BI) activities, such as creating charts, reports or graphs and using the data. Although there are great differences between the two sets of activities, they are equally important and complement each other well.

More Read

data security unveiled

Data Security Unveiled: Protecting Your Information in a Connected World

Green Data Centers Make Data-Driven Entities More Sustainable
NIST 800-171 Safeguards Help Non-Federal Networks Handling CUI
The Role of Data in Automating Healthcare Processes for Improved Patient Results
Does Data Mining Really Help with White Label SEO?

For executing the BI functions and data science activities, most companies have professionally dedicated BI analysts as well as data scientists. However, it is here that companies often confuse the two without realizing that these two roles require different expertise.

It is unfair to expect a BI analyst to be able to make accurate forecasts for the business. It could even spell disaster for any business. By studying the major differences between BI and real data science, you can choose the right candidate for the right tasks in your enterprise.

Area of Focus

On the one hand, traditional BI involves generating dashboards for historic data display according to a fixed set of key performance metrics, agreed upon by the business. Therefore, BI relies more on reports, current trends, and Key Performance Indicators (KPIs).

On the other hand, real data science focuses more on predicting what might eventually happen in the future. Data scientists are thus more focused on studying the patterns and various models and establishing correlations for business forecasts.

For example, corporate training companies may have to predict the growing need for new types of training based on the existing patterns and demands from corporate companies.

Data Analysis and Quality

BI requires concerned analysts to look at the data backwards, namely the historical data, and so their analysis is more retrospective. It demands the data to be absolutely accurate, since it is based on what actually occurred in the past.

For example, the quarterly results of a company are generated from actual data reported for business done over the last three months. There is no scope for error as the reporting is descriptive, without being judgmental.

With regard to data science, data scientists are required to make use of predictive and prescriptive analyses. They have to come up with reasonably accurate predictions about what must happen in the future, using probabilities and confidence levels.

This is not guesswork, as the company will execute the necessary steps or improvement measures based on the predictive analysis and future projections. It is clear that data science cannot be 100% accurate; however, it is required to be “good enough” for the business to take timely decisions and actions to deliver the requisite results.

An ideal example of data science is estimating the business revenue generation of your company for the next quarter.

Data Sources and Transformation

With BI, companies require advanced planning and preparations for using the right combination of data sources to achieve the data transformation. To get appropriate data insights about customers, business operations and products, data science is able to create data transformations on the fly, using data sources available on demand.

Need for Mitigation

BI analysts do not have to mitigate any uncertainty surrounding the historical data, since they are based on actual occurrences and accurate and do not involve any probabilities.

For real data science, there is a need to mitigate the uncertainty in the data. For this purpose, data scientists use various analytic and visualization techniques to identify any uncertainties in the data. They eventually use appropriate data transformation techniques to convert the data into a format that is workable and approximate, which helps to get the data into a format that can be easily combined with other data sources.

Process

As you cannot get the data transformation done instantly with BI, it is a slow manual process involving plenty of pre-planning and comparisons. It needs to be repeated monthly, quarterly or annually and it is thus not reusable.

Yet, the real data science process involves creating instant data transformations via predictive apps that trigger future predictions based on certain data combinations. This is clearly a fast process, involving a lot of experimentation.

Whether you need reports over the last five years or future business models, BI and real data science are necessary for any business. By knowing the difference, you can make better decisions that will lead to business success.

briggpatten September 8, 2015
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

IoT Cybersecurity
4 Common Misconceptions Surrounding IoT Cybersecurity Compliance
Internet of Things
iot and cloud technology
IoT And Cloud Integration is the Future!
Internet of Things
ai in marketing
4 Ways AI Can Improve Your Marketing Strategy
Artificial Intelligence
data security unveiled
Data Security Unveiled: Protecting Your Information in a Connected World
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data security unveiled
Security

Data Security Unveiled: Protecting Your Information in a Connected World

8 Min Read
green data center
Big Data

Green Data Centers Make Data-Driven Entities More Sustainable

12 Min Read
data security
Data Management

NIST 800-171 Safeguards Help Non-Federal Networks Handling CUI

5 Min Read
role of big data in healthcare in automation
Big DataExclusive

The Role of Data in Automating Healthcare Processes for Improved Patient Results

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?