Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Decisions, decision management and analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decisions, decision management and analytics
Business Intelligence

Decisions, decision management and analytics

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Tom Davenport was interview recently by the Sloan Business Review on Reengineering your decision making processes about analytics and how companies make decisions. While the interview is mostly focused on manual decision making, many of the points are just as valid when you consider decision management and decisioning technology as I do.

Tom Davenport was interview recently by the Sloan Business Review on Reengineering your decision making processes about analytics and how companies make decisions. While the interview is mostly focused on manual decision making, many of the points are just as valid when you consider decision management and decisioning technology as I do.

Analytics, says Tom, are predictive and explanatory. They focus on the future and on explaining what the data you have collected means not just on reporting what that data is. I have blogged about analytics and what it means before but I always come back to my favorite phrase:

More Read

Image
6 Simple Steps to a Big Data Strategy
Data Driven Journalism
The Role of Analytics and BI in the Entertainment Industry
Leveraging Customer Data to Drive Business Decisions
The Ultimate Guide to Building a Smart Office

Analytics simplify data to amplify their meaning

As Tom says, analytics take your data and tell you what it means now and in the future, analytics help you see patterns that explain your business and how it’s going. Yet, no matter how sophisticated your analytics are, they won’t necessarily improve your decision making. As Tom points out, you must tie these analytics to actual decisions and make them part of your decision making process (whether manual or automated).

I call this beginning with the decision in mind: Rather than starting with the data and seeing how it can be analyzed, begin with the decision you wish to improve. Understand how this decision affects your business (what KPIs it impacts for instance) so you can understand what makes a good decision and what it means to make better decisions. Then figure out what analytics would help make better decisions and go find, clean and integrate the data you need for these analytics.

Tom also discusses the historical separation between transactional and analytic / decisioning systems. This separation was something Neil Raden and I discussed in Smart (Enough) Systems in the chapter “Why aren’t my systems smart enough already?” Driven largely if not completely by technical rather than business or logic considerations, this separation is finally going away. And it really needs to – businesses are run using transactional systems and if these systems can’t make or support decision making then inconsistent, judgmental and inaccurate decisions may well be the result. Adding Decision Services to legacy “dumb” applications bridges this separation without requiring complete reengineering and makes these systems “smarter” and more analytical.

Finally Tom reiterates something that he and I have long bemoaned – the lack of any systematic attempt by most companies to identify the decisions that matter and to focus their analytic effort on those decisions. Rather, most companies are opportunistic – applying analytics and other decisioning technologies and approaches as and when projects come up. As Tom points out, we need a way to help companies adopt analytics systematically even when they are not headed by someone with an analytic or technical background. I have blogged about this before and I really like Tom’s suggestion is to identify the top 5 strategic and top 5 operational decisions (see this post for a discussion of the difference).

When it comes to operational decisions, I like to suggest that people begin by identifying the decisions within a business process or a set of business processes. The mapping of these decisions to the Key Performance Indicators for a company or even a division can be very enlightening, quickly identifying a set of operational decisions that have a real impact on those things the company cares to measure. This Decision Discovery is the first step of the decision management methodology that Neil and I described in the book and that I have been developing as I have subsequently worked with various clients. The end result is to make operational decision making a corporate asset.

Tom’s new book (Analytics at work, reviewed here) is highly recommended and, interestingly, some research I did with IBM resulted in a very similar pattern of adoption.

 

Copyright © 2010 http://jtonedm.com James Taylor

Syndicated from International Institute for Analytics

TAGGED:analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

First Look – Dulles Research Carolina

6 Min Read
Data Science
Best PracticesCloud ComputingData Management

The Evolution Of Data Science In The Cloud

5 Min Read

Acting on Data Analytics – More than Food for Thought

6 Min Read

Job Satisfaction and Analytics-based Performance Management.

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?