Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Data Budget
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Inside Companies > The Data Budget
Inside Companies

The Data Budget

DeanAbbott
DeanAbbott
4 Min Read
SHARE

Larger quantities of data permit greater precision, greater certainty and more detail in analysis. As observation counts increase, standard errors decrease and the opportunity for more detailed- perhaps more segmented- analysis rises. These are things which are obvious to even junior analysts: The standard error of the mean is calculated as the standard deviation divided by the square root of the observation count.

Larger quantities of data permit greater precision, greater certainty and more detail in analysis. As observation counts increase, standard errors decrease and the opportunity for more detailed- perhaps more segmented- analysis rises. These are things which are obvious to even junior analysts: The standard error of the mean is calculated as the standard deviation divided by the square root of the observation count.

This general idea may seem obvious when spoken aloud, but it is something which many non-technical people seem to give little thought. Ask any non-technical client whether more data will provide a better answer, and the response will be in the affirmative. It is a simple trend to understand.

However, people who do not analyze data for a living do not necessarily think about such things in precise terms. On too many occasions, I have listened to managers or other customers indicate that they wanted to examine data set X and test Y things. Without performing any calculations, I had strong suspicions that it would not be feasible to test Y things, given the meager size of data set X. Attempts to explain this have been met with various responses. To be fair, some of them were constructive acknowledgments of this unfortunate reality, and new expectations were established. In other cases, I was forced to be the insistent bearer of bad news.

More Read

5 Innovative and Diverse Uses of Big Data
Predictive Analytics in Action: Anthony Goldbloom of Kaggle
Amazon: Using Big Data Analytics to Read Your Mind
Data Collaboration: Crowdsourcing for Health Care
Learn from Carnegie Mellon’s School of Data Management Hard Knocks

In one such situation, a data set with less than twenty thousand observations was to be divided among about a dozen direct mail treatments. Expected response rates were typically in the single-digit percents. Treatments were to be compared based on various business metrics (customer spending, etc.). Given the small number of respondents and high variability of this data, I realized that this was unlikely to be productive. I eventually gave up trying to explain the futility of this exercise, and resigned myself to listening to biweekly explanations the noisy graphs and summaries. One day, though, I noticed that one of the cells contained a single observation! Yes, much energy and attention was devoted to tracking this “cell” of one individual, which of course would have no predictive value whatsoever.

It is important for data analysts to make clear the limitations of our craft. One such limitation is the necessity of sufficient data from which to draw reasonable and useful conclusions. It may be helpful to indicate this important requirement as the data budget: “Given the quality and volume of our historical data, we only have the data budget to answer questions about 3 segments, not 12.” Simply saying “We don’t have enough data” is not effective (so I have learned through painful experience). Referring to this issue in terms which others can appreciate may help.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Should Finance be the Information Czar?

5 Min Read

Internal BI Promotion Video from the SAP BI Competency Center

1 Min Read

MasterCard Applies Big Data to Help Retailers Achieve Better Results

6 Min Read

I Tweet Therefore I Am

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?