Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Analytics Evolution at LinkedIn – Key Takeaways
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Data Analytics Evolution at LinkedIn – Key Takeaways
AnalyticsBig DataHadoopMapReduce

Data Analytics Evolution at LinkedIn – Key Takeaways

Raju Bodapati
Raju Bodapati
4 Min Read
SHARE

At Teradata Partners Conference 2012 held this week near Washington D.C., Simon Zhang’s talk on “Data Sciences and Analytics Evolution @LinkedIn,” provided many useful insights for oraganizations wanting to expand into the space of decision making using Data Analytics built on Big Data ecosystems.

At Teradata Partners Conference 2012 held this week near Washington D.C., Simon Zhang’s talk on “Data Sciences and Analytics Evolution @LinkedIn,” provided many useful insights for oraganizations wanting to expand into the space of decision making using Data Analytics built on Big Data ecosystems.

  1. LinkedIn’s big data ecosystem contains eight basic functions working in a cyclic mode. The first function starts with understanding the company’s products indepth. Second, establishing tracking mechanisms to get the data about the product. Third, data management and data quality function focus on deploying good quality data across enterprise. Fourth, Adhoc analysis on the data provides first cut understanding of the data gathered. Fifth, business intelligence is used for standardized reporting. Sixth, deep analytics functions are used for extracting important patterns. Seventh, obtain insights to extract relevant knowledge from the patterns. Finally, the decision step derives the value utilizing the knowledge gained.
  2. These functional layers could evolve to be very diconnected loosing the sight on value generation. Therefore, when building these teams, formulate a team that works like one person; have a set of mixed skills cover the breadth and depth on all eight components of the model. The success is attributable to reducing or removing the boundaries within and across teams. When hiring people, they value skills to about 5%, IQ and EQ to about 15% and the passion to succeed to 80%.
  3. LinkedIn follows the “three second rule” to set the performance targets for the information delivery. LinkedIn believes speed matters when it comes to adaptation. Adaptation exponentially increases as the response time goes towards sub-seconds.
  4. The information provided to business should be specific and focused towards closing the deal. A lot of thinking and processing goes on before the final snippet of information is shared as the final action. For example, if there was a question on which companies need to be approached for specific product sales, behavioral data from about two million companies is analyzed to arrive at traget prospects. Then, the identity data is used to determine who within the selected companies should be approached. Finally, the social data of those individuals is analyzed to provide insight on how they need to be approached in order to close the deal. Thus, analytics at LinkedIn sets the focus on reflecting (meaning close to the truth) and not to merely predicting.
  5. The culture at LinkedIn is driven towards the final results by passing the charts or reports. Beautiful charts, dashboards and scorecards may look good, but are not enough if the focus has to be closing the deal.

In summary, LinkedIn seemed to be one of those companies that are heavily dependent on using big data integration coupled with analytics to provide insights for decisons.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

So What Is Prescriptive Analytics?

4 Min Read

Advanced analytics, particularly predictive and statistical…

1 Min Read
big data skills gap
Big DataData ScienceExclusiveJobsNews

Overcoming the Big Data Skills Gap: The State of the Labor Market

5 Min Read
Image
Big Data

Addressing 5 Objections to Big Data

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?