Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Comprehensive Approach is Required for Data Quality Improvement
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > A Comprehensive Approach is Required for Data Quality Improvement
Business Intelligence

A Comprehensive Approach is Required for Data Quality Improvement

MIKE20
MIKE20
4 Min Read
SHARE

Despite–or perhaps because of–the tremendous cost of data quality issues, most organizations are struggling to address them. We believe there are five primary reasons that they are failing:

Contents
  • Why is a New Competency Model Required?
  • Read more on MIKE2.0’s Information Governance Solution Offering

Despite–or perhaps because of–the tremendous cost of data quality issues, most organizations are struggling to address them. We believe there are five primary reasons that they are failing:

  • Our systems are more complex than ever before. Many companies now have more information than ever before. This requires greater integration. New regulations, M&A activity, globalization, and increasing customer demands collectively mean that IM challenges are increasingly–both in numbers and in terms of complexity.
  • Silo-ed, short-term project delivery focus. Many projects are often funded at a departmental level. As such, they typically don’t account for the unexpected effects of how data will be used by others. Data flows among disparate systems–and the design of these connection points–must transcend strict project boundaries.
  • Traditional development methods do not place appropraite focus on data management. Many projects are focused more on functionality and features than on information. The desire to build new functionality–for the sake of new functionality–often results in information being left by the wayside.
  • DQ issues are often hidden and persistent. Lamentably, DQ issues can remian unnoticed for some time. Ironically, some end-users may suspect that the data in the systems on which they rely to make decisions are often inaccurate, incomplete, out-of-date, invalid, and/or inconsistent. This is often propagated to other systems as organizations increase connectivity. In the end, many organizations tend to underestimate the DQ issues in their systems.
  • DQ is fit for purpose. Many DQ and IM professionals know all too well that it is difficult for end-users of downstream systems to improve the DQ of their systems. While the reasons vary, perhaps the biggest culprit is that the data is entered via customer-facing operational systems. Often these clerks do not have the same incentive to maintain high DQ; they are often focused on entering  data quickly and without rejection by the system at the point of entry. Eventually, however, errors become apparent, as data is integrated, summarized, standardized, and used in another context. At this point, DQ issues begin to surface.

A comprehensive data quality program must be defined to meet these challenges.

More Read

“One of the things our grandchildren will find quaintest about us is that we distinguish the digital…”
Consumer Intelligence at the Partners Conference
How BI Can Help Enterprises Overcome The Effects Of The Pandemic
Social and mobile and cloud – where enterprise applications are going
How To Use Big Data To Deliver Optimized Customer Experiences

Why is a New Competency Model Required?

Many organizations have struggled to meet these challenges for one fundamental reason: they fail to focus enterprise-wide nature of data management problems. They incorrectly see information as a technology or IT issue, rather than as a fundamental and core business activity. In many ways Information is the new accounting. Solutions required to address complex infrastructure and information issues can’t be tackled on a department-by-department basis. 

While necessary, defining an enterprise-wide programme, on the other hand, is also very difficult. Building momentum for these initiatives takes a long period of time. Further, it can easily lead to approaches out-of-sync with business needs. Attempts to enforce architectural governance, for example, can quite easily become ineffectual or a “toothless watchdog” providing little value.

Organizations require an approach that can address all of the inherent challenges of

  • a federated business model
  • an often complex technology architecture

Fundamentally, this approach should be both manageable, effective, and conducive to innovation. Admittedly, this is not an easy task. This is the rationale for MIKE2.0 and the need for a new competency of Information Development.

Read more on MIKE2.0’s Information Governance Solution Offering

TAGGED:information governance
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Ungoverned Spaces: Innovating Information Flow

10 Min Read

Top 9 ways to maintain a healthy BI environment

7 Min Read

Information Governance and Innovation

1 Min Read

The Success Factors of Effective Information Governance

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?