Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Comprehensive Approach is Required for Data Quality Improvement
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > A Comprehensive Approach is Required for Data Quality Improvement
Business Intelligence

A Comprehensive Approach is Required for Data Quality Improvement

MIKE20
MIKE20
4 Min Read
SHARE

Despite–or perhaps because of–the tremendous cost of data quality issues, most organizations are struggling to address them. We believe there are five primary reasons that they are failing:

Contents
  • Why is a New Competency Model Required?
  • Read more on MIKE2.0’s Information Governance Solution Offering

Despite–or perhaps because of–the tremendous cost of data quality issues, most organizations are struggling to address them. We believe there are five primary reasons that they are failing:

  • Our systems are more complex than ever before. Many companies now have more information than ever before. This requires greater integration. New regulations, M&A activity, globalization, and increasing customer demands collectively mean that IM challenges are increasingly–both in numbers and in terms of complexity.
  • Silo-ed, short-term project delivery focus. Many projects are often funded at a departmental level. As such, they typically don’t account for the unexpected effects of how data will be used by others. Data flows among disparate systems–and the design of these connection points–must transcend strict project boundaries.
  • Traditional development methods do not place appropraite focus on data management. Many projects are focused more on functionality and features than on information. The desire to build new functionality–for the sake of new functionality–often results in information being left by the wayside.
  • DQ issues are often hidden and persistent. Lamentably, DQ issues can remian unnoticed for some time. Ironically, some end-users may suspect that the data in the systems on which they rely to make decisions are often inaccurate, incomplete, out-of-date, invalid, and/or inconsistent. This is often propagated to other systems as organizations increase connectivity. In the end, many organizations tend to underestimate the DQ issues in their systems.
  • DQ is fit for purpose. Many DQ and IM professionals know all too well that it is difficult for end-users of downstream systems to improve the DQ of their systems. While the reasons vary, perhaps the biggest culprit is that the data is entered via customer-facing operational systems. Often these clerks do not have the same incentive to maintain high DQ; they are often focused on entering  data quickly and without rejection by the system at the point of entry. Eventually, however, errors become apparent, as data is integrated, summarized, standardized, and used in another context. At this point, DQ issues begin to surface.

A comprehensive data quality program must be defined to meet these challenges.

More Read

master data management
The Misunderstanding of Master Data Management
How Google Analytics Shows Me Who Visits My Blog (and Why It’s Important)
Focusing on decisions to improve the software end product
How Artificial Intelligence is Transforming the Corporate World
The End of Cyberspace: Proust and the Squid: The reader as cyborg

Why is a New Competency Model Required?

Many organizations have struggled to meet these challenges for one fundamental reason: they fail to focus enterprise-wide nature of data management problems. They incorrectly see information as a technology or IT issue, rather than as a fundamental and core business activity. In many ways Information is the new accounting. Solutions required to address complex infrastructure and information issues can’t be tackled on a department-by-department basis. 

While necessary, defining an enterprise-wide programme, on the other hand, is also very difficult. Building momentum for these initiatives takes a long period of time. Further, it can easily lead to approaches out-of-sync with business needs. Attempts to enforce architectural governance, for example, can quite easily become ineffectual or a “toothless watchdog” providing little value.

Organizations require an approach that can address all of the inherent challenges of

  • a federated business model
  • an often complex technology architecture

Fundamentally, this approach should be both manageable, effective, and conducive to innovation. Admittedly, this is not an easy task. This is the rationale for MIKE2.0 and the need for a new competency of Information Development.

Read more on MIKE2.0’s Information Governance Solution Offering

TAGGED:information governance
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Information Governance and Innovation

1 Min Read

Top 9 ways to maintain a healthy BI environment

7 Min Read

Ungoverned Spaces: Innovating Information Flow

10 Min Read

The Success Factors of Effective Information Governance

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?