Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Comments on the Nine Laws of Data Mining
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Comments on the Nine Laws of Data Mining
Data MiningPolicy and Governance

Comments on the Nine Laws of Data Mining

SandroSaitta
SandroSaitta
3 Min Read
SHARE

lawAfter reading the article from Tom Khabaza, I want to discuss some aspects of it with you.

lawAfter reading the article from Tom Khabaza, I want to discuss some aspects of it with you. The article is in general nicely written and shows the experience of the author, however I do have comments for some of the laws.  In the first law, it is stated that that there is no data mining without business objective. While it is true most of the time, this is not always the case. In R&D, a data mining project can be started without clear business goal.

Since data mining may discover unexpected knowledge, there may be no defined objective at the beginning of the project. Later in the project, one can define the objective if specific trends has been found in the data for example. Clearly, there are two approaches for data mining in the company: top-down and bottom-up. The top-down approach is driven by business needs. The bottom-up approach is driven by the data. Both approaches can be complementary. When you are driven by the data, the business objective may come later. If you discover that there is no usable trend in the data, maybe there is no place for a project and thus no business objective. But there is still data mining.

In the second law, Khabaza states an excellent point about the importance to understand the business:

More Read

Data Mining
5 Challenges Your Company Has to Overcome to Succeed in Data Mining
Stratified Sampling vs. Posterior Probability Thresholds
Commenting in social media means you want a response, right? Wrong!
Targeting readers who hate my book
Big Data Ethics: 4 Principles to Follow

“[…] whatever is found in the data has significance only when interpreted using business knowledge, and anything missing from the data must be provided through business knowledge.”

In the fourth law, Khabaza explains that  problem formulation and resolution are both tasks for the data miner:

“However, these views arise from the erroneous idea that, in data mining, the data miner formulates the problem and the algorithm finds the solution.  In fact, the data miner both formulates the problem and finds the solution – the algorithm is merely a tool which the data miner uses to assist with certain steps in this process”

It means that the complete knowledge discovery process can’t be automated. The data miner has to formulate the problem, solve it and interpret the results. However, parts of the data mining process can still be automated (ETL, building the model, scoring, etc.)

Read the full article from Tom Khabaza.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive
data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Data Mining

Mining for Gold in Your Data

5 Min Read

Open Source and free data

2 Min Read

A Billion Here, A Billion There

2 Min Read

Data mining competition: HIV progression

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?