Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Notification
SmartData CollectiveSmartData Collective
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software

Software

Find More: Hadoop MapReduce Marketing Automation Open Source Perl SQL
Latest Software News

Technology’s Impact on Accounting and Business

I recently participated in a panel discussion—which was (perhaps esoterically) titled “The Relationship Between Information Systems and Accounting In Practice:…

David Freeman
David Freeman
11 Min Read
Image
AnalyticsBig DataData ManagementData MiningData QualityData WarehousingExclusiveHadoopPredictive Analytics

The Driving Force Behind Big Data: Data Connectivity

In most organizations, stakeholders maintain the perspective that Big Data offers tremendous benefits to the enterprise, especially when it comes…

Jesse_Davis
Jesse_Davis
8 Min Read

Big (Data) Wheel Keep on Turning

The alacrity with which analysts, vendors, customers and even the popular press have jumped on the big data bandwagon over…

Barry Devlin
Barry Devlin
5 Min Read

Who Is Winning the Real Cyber War?

“The empires of the future are the empires of the mind,” said Sir Winston Churchill at Harvard University in 1943.…

BobGourley
BobGourley
4 Min Read

Revenge of the Nerds

A recent article in The Wall Street Journal, “Revenge of the Nerds, the Sequel: Silicon Vall A recent article in…

RickSherman
RickSherman
4 Min Read

Two Fun Big Data Videos Every Techie Should Watch

With this post I would like to introduce two videos I recommend any enterprise technologist watch. Both are from the…

BobGourley
BobGourley
2 Min Read

5 Rules for Better Sales Analytics

Sales performance isn’t just about sales numbers and sales activities.  Sure, trends in sales success are deeply tied to sales…

BrunoAziza
BrunoAziza
4 Min Read

Interactive Analytics and OLAP – Part III

In the part II of interactive analytics and OLAP, we left a question: Can the narrowed OLAP be used to complete the computation process as follows (marketing and sales data analysis)? In the part II of interactive analytics and OLAP, we left a question: Can the narrowed OLAP be used to complete the computation process as follows (marketing and sales data analysis)?The first in customers whose purchases from the company account for half of the sales volume of the company of the current year;The stocks which go up to the limit for three consecutive days within one month;Commodities in the supermarket which are sold out at 5 P.M for three times within one month;Commodities whose sales volumes in this month have decreased by more than 20% over those of the preceding month; Of course NOT!Currently OLAP system has two key disadvantages:The multi-dimensional cube is prepared in advance by the application system and user does not have the capability to temporarily design or reconstruct the cube, so once there is new analysis demand, it is necessary to re-create the analytics cube.The analysis actions could be implemented by cube are rather monotonous. The defined actions are quite few, such as the drilling, aggregating, slicing, and pivoting. The complicated analysis behavior requiring multi-steps is hard to implement.Although the current OLAP tools are splendid regarding its look and feel, few on-line analysis capabilities powerful enough are provided actually.Then, what kind of OLAP do we need? What kind of OLAP tools we need?    It is very simple, and we need a kind of on-line analytical system that can support evaluation process, which SQL data computing or excel computation can handle.Technically speaking, steps for evaluation process can be regarded as computation regarding data (query can be understood to be filter computation). This kind of computation can be freely defined by user and user can occasionally decide the next computation action according to the existing intermediate result, without having to model beforehand. Additionally, as data source is generally database system, it is necessary to require this kind of computation to be able to very well support mass structured data (tools like esProc) instead of simple numeric computation. And evaluation process is what business need especially in marketing and sales data analysis.Then, can SQL (or MDX) play this role?    SQL is indeed invented for this aim and it owns complete computation capability and it adopts a writing style similar to natural language.But, as SQL computation system is too basic, it is very difficult and over-elaborate to achieve complex computation by a SQL data computing, such as problems listed in the preceding paragraphs. It is even not so easy for programmers who have received professional training, so ordinary users can only use SQL to implement some of the simplest queries and aggregate computation (based on the filter and summarization of a single table). This result leads to the fact that the application of SQL has already deviated far away from its original intention of invention, almost becoming the expertise for programmers.We should follow the working thought of SQL to carefully study the specific disadvantage of SQL and find the way to overcome it in an effort to develop a new generation of computation system, thereby implementing the evaluation process, namely, the real OLAP, instant data analytics.Related Articles:Interactive Analytics and OLAP - Part IIInteractive Analytics and OLAP - Part I 

raqsoft
raqsoft
0 Min Read

Gartner’s 2012 Hype Cycle for Emerging Technologies

Since 1995, Gartner has been tracking the development and adoption of new technologies by plotting them on their Hype Cycle,…

AlexOlesker
AlexOlesker
6 Min Read

Software, IP Protection, Innovation and the Apple – Samsung Verdict

The patent trial that many in tech had watched with keen interest ended yesterday as the jury reached a verdict…

mfauscette
mfauscette
6 Min Read
1 2 … 49 50 51 52 53 … 61 62

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?