By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
    predictive analytics for amazon pricing
    Using Predictive Analytics to Get the Best Deals on Amazon
    8 Min Read
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Business Intelligence Solutions Aid Financial Services Fraud Prevention
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Business Intelligence Solutions Aid Financial Services Fraud Prevention
Business Intelligence

Business Intelligence Solutions Aid Financial Services Fraud Prevention

Brett Stupakevich
Last updated: 2020/08/07 at 1:22 AM
Brett Stupakevich
5 Min Read
business intelligence lessons from Brexit
Shutterstock Licensed Photo - By svetabelaya
SHARE

In recent years, financial services have seen the regulations continue to pile on as this industry is riddled with fraud.  According to a recent blog post by Mukund Raghunath, senior vice president of Mu Sigma Inc., the industry is particularly susceptible to internal fraud.  However, there is good news within this problem – data-mining and Business Intelligence (BI) are helping make the process for uncovering and preventing fraud a bit easier.

Contents
Economic Downturn Leads to More Internal FraudThe Good NewsAdvancements in Transactional Data Spell More Information KeysHow this Data Translates to FraudModeling for FraudThe Key to Identifying & Preventing Fraud

The definition Raghunath gives for internal fraud is very important for the subject of this article – “Internal fraud occurs when an employee exploits the vulnerabilities of the system to route benefits to either him or herself or an accomplice.” This topic is timely because history shows that internal fraud increases during hard economic times, as is pointed out in the post.

Economic Downturn Leads to More Internal Fraud

Internal fraud has always been difficult to prevent because it’s hard to detect.   Hence, the propensity of employees to become involved in fraud schemes, when times are tough, is on the rise.  It’s a staggering number for the financial services industry alone – $30 billion annually (Source Insurance Information Institute).

The Good News

Raghunath talks about which data elements to consider when investigating fraud claims.  These data elements are the keys to not only investigating fraud, but with proper BI practices, data fraud can be prevented, if you know which patterns to look for.  Let’s look at his data elements, see how they can be applied to Business Intelligence practices, and start fraud prevention instead of investigation.

More Read

data-driven approach in healthcare

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

Automotive Industry Uses Analytics To Solve Pressing Supply Chain Issues
How can CIOs Build Business Value with Business Analytics?
Seven Benefits of Using AI to Perform Text Analysis
7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

Advancements in Transactional Data Spell More Information Keys

The finance and insurance industry has made gains in recording and organizing data recorded and accessed by customers, employees and agents.  They now digitally record transactions related to “shopping, policy endorsements, claims…and service-level touch-points.”

This data can help pinpoint where the fraud starts by revealing the demographic characteristics of the claimant and internal contact.  Through data modeling, patterns and incongruities can be identified that can reveal where fraud is occurring.  For instance, using the demographic data mentioned above could identify these fraud alerts:

  • An adjuster issuing multiple supplemental payments to a claimant
  • An adjuster issuing payments to the same claimant on different claim
  • An employee working with the same service or repair provider who is issuing checks to the same payee

How this Data Translates to Fraud

Raghunath points out that the flag in each of these scenarios is the “number of payments made by an employee to a payee.”  Determining this key is the piece of the puzzle that will help the investigator determine fraud and, in some cases, prevent more fraud sooner.

Modeling for Fraud

Once you have determined the key data such as number of payments, you can begin designing the data models to match the two outcomes – fraud or no fraud.  Several data-mining techniques can apply to revealing these outcomes.

Briefly, Raghunath refers to Logistic Regression as a popular method for getting these outcomes.  In this case, it’s required to rely on individual instances to determine whether fraud occurred or not.  Additionally, he points out that a linear modeling approach can better forecast fraud, due to better resampling techniques.

The Key to Identifying & Preventing Fraud

However, the model really isn’t the key to identifying fraud cases; it’s more identifying the pieces of data that will be modeled that will make modeling effective.

Flexible Business Intelligence solutions that adopt several methods of modeling, combined with the right data, can help data-miners reveal the paths to fraud and provide more prevention.  And, as we are able to pull more intelligent data from more sources, fraud will get easier to detect, which makes data modeling and predictive analytics all that much more important.

TAGGED: analytics
Brett Stupakevich September 2, 2010
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best Practices Big Data Data Collection Data Management Privacy
data protection for SMEs
8 Crucial Tips to Help SMEs Guard Against Data Breaches
Data Management
How AI is Boosting the Customer Support Game
How AI is Boosting the Customer Support Game
Artificial Intelligence
AI analytics
AI-Based Analytics Are Changing the Future of Credit Cards
Analytics Artificial Intelligence Exclusive

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read
supply chain analytics
Analytics

Automotive Industry Uses Analytics To Solve Pressing Supply Chain Issues

6 Min Read
Analytics

How can CIOs Build Business Value with Business Analytics?

8 Min Read
text analytics
Text Analytics

Seven Benefits of Using AI to Perform Text Analysis

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?