Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data’s Big Flip-Flop
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big Data’s Big Flip-Flop
AnalyticsBig Data

Big Data’s Big Flip-Flop

BillFranks
BillFranks
6 Min Read
SHARE

Analytics Matters with Bill Franks

Analytics Matters with Bill Franks

It wasn’t too long ago that many people espoused the decline, if not death, of the SQL language and relational database technology in general. As a level set, remember that relational technology stores data into rows and columns and that the way to access relational data is through Structured Query Language (SQL). For a couple of years, there was a full frontal assault on relational approaches from the Hadoop and non-relational crowds. The overhead of placing data into pre-defined rows and columns was deemed too great, compared to storing data within a non-relational environment.

In non-relational environments, users are free to use a wide range of programming languages to analyze data in any format. The data is typically simply stored in files with no assumed format or relationships. This approach does have its merits, but it also has its limitations.

More Read

google reviews big data
Local Marketers Discover Perks Of Merging Big Data And Google Reviews
How Big Data Can Improve Multiplayer Game Matching
#5: Here’s a thought…
Stunning Business Intelligence Visualizations… from 1830
QA Teams Need All-in-One Data Analytics Platforms for Testing

In case you hadn’t noticed, a huge flip-flop has occurred. Many of the same people and organizations that were recently dismissing the entire concept of relational environments and SQL are now racing to … wait for it … add SQL-style interfaces on top of non-relational platforms like Hadoop! Let’s first take a look at how the flip-flop came about and then discuss why it is a good thing.

One big and mistaken assumption in the case against relational technologies is that relational technologies are not flexible and can’t handle unexpected questions or poorly formatted data. Therefore, a non-relational platform is required to be nimble. It is important to distinguish between an inherent shortcoming of a relational system and a shortcoming in how that system is implemented. That distinction is critical to understanding the flip-flop.

It is true that many organizations, particularly the large ones, not only had a large number of relational systems in place, but also locked the systems down very tightly. It was in fact difficult for users to ask new questions or to gain access to enough computing resources. However, this was due to the policies laid on top of relational technology as opposed to the technology itself. It is entirely possible to load and query data in a relational environment that isn’t in 3rd normal form, that hasn’t been formally modeled, and that isn’t yet clean. I spent years doing this.

The concept of an analytic sandbox or discovery environment centers on freeing users from traditional IT-imposed access limits and allowing them to explore and experiment with data in a relational environment. Granted, not all types of data can be handled in a relational system, but most common business data sources can be.

Like any solution, relational approaches are very good for many problems and are not as good for others. The same can be said about non-relational environments. Analytic professionals like me have always used a mix of environments because it isn’t about one approach being better or worse, but about which fits a given problem best. To me, SQL is the new kid on the block because when I started out, SQL did not exist! Over time, I added SQL processing into the mix where it made sense. It ended up making sense a huge proportion of the time, but not all of the time.

Recently, some organizations have tried to do too much with non-relational platforms. In many cases, this has led to inefficient processes that take more time to create, manage, and process than standard SQL approaches. Luckily, most of those who were looking to put up SQL’s tombstone have come around to their error.

It is terrific for the industry that the flip-flop around relational technologies has occurred. Having a mix of capabilities is a good thing and it isn’t a zero-sum game where only one approach can win. Facebook realized that trying to implement SQL-style processing outside of an environment built for it was wasting time and money to reinvent something that already existed and worked just fine. As a result, Facebook added a large relational environment into its mix because certain types of processing just work better that way.

I’ll be participating in a virtual event March 27 called Data Discovery In Action. Feel free to register here at no cost. The focus of the event will be on how to combine various processing paradigms and analytic techniques to maximize the ability of your organization to discover and deploy new high impact analytics. There will be discussion of both relational and non-relational approaches, which is how it should be!

Many of us who have spent years developing advanced analytic processes were surprised to see relational technologies and SQL getting beat up so badly. It never made sense to kill SQL and I’ll forgive those who were misguided in their attempts to do so. After all, it can’t help but sting a little to have to pull an about face and execute a flip-flop like politicians are known to do. But, sometimes executing a flip-flop is the right thing to do.

Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Kosmix, along with DeepPeep, are example of the Deep Web , aka…

1 Min Read

Current Events Are A Goldmine of Data: Here’s How to Get Ahead

7 Min Read

Is Big Data Good or Evil?

7 Min Read

Decide.com – New Search Ideas for Unstructured Data

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?