Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data is Puzzling!
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big Data is Puzzling!
AnalyticsBig DataData Management

Big Data is Puzzling!

Ajay Kelkar
Ajay Kelkar
5 Min Read
SHARE

The three Vs — volume, velocity and variety — are the essential characteristics of big data. But isn’t it amazing that “big data” suddenly seems to have happened overnight & is conveniently a great marketing ploy for Technology companies to sell their wares! But do companies need “more data” or “less”. What you actually need is “Big commitment” to data period!

The three Vs — volume, velocity and variety — are the essential characteristics of big data. But isn’t it amazing that “big data” suddenly seems to have happened overnight & is conveniently a great marketing ploy for Technology companies to sell their wares! But do companies need “more data” or “less”. What you actually need is “Big commitment” to data period!

The current data situation for most companies is like having sections of a jigsaw puzzle in different rooms, but the puzzle keeps growing without a “puzzle master” integrating all this. The analyst, like the “ring master”, is really the “puzzle master” here & she needs to think very differently to do this. We don’t need more data; we need the correct interrelationships between data to be established & then we need “Big execution commitment” to make the data matter, by bringing decisions closer to the front end of every business.

big data puzzle resized 600

More Read

companies using big data to address distracted driving
Car and Mobile Companies Use Big Data to Reduce Distracted Driving
Big data, big acquisition, still some big questions
Big Data Meets Divorce: How Companies Take Advantage Of Life Changes
US support for gay marriage, graphed
Bioinformatics: The Fascinating Marriage of Data Science and Biology

I am constantly hearing that Data analysis is becoming a more important component to many businesses. IDC estimates enterprises will spend more than US$120 billion by 2015 on analysis systems. IBM estimates that it will reap $16 billion in business analytics revenue by 2015

There is so much talk about shortage of analytics skills. Research from McKinsey & Co suggests that US organizations are facing a shortage of 200,000 IT staffers with deep analytics skills. I wonder whether we really have a shortage or are we looking for the wrong people?

Do we need more “specialists” who really cannot “integrate” the many parts of a puzzle or do we need people from all sorts of backgrounds who bring fresh perspectives to the data that we already have not some mythical “big data”!!

Here is something interesting: Watching how people put together picture puzzles can reveal “a lot of profound effects that we could bring to big data” analysis, said Jeff Jonas, IBM’s chief scientist for entity analytics

Joab Jackson has this very interesting take in the CIO magazine:

Puzzles are about assembling small bits of discrete data into larger pictures. In many ways, this is the goal of data analysis as well, namely finding ways of assembling data such that it reveals a bigger pattern.

A lot of organizations make the mistake of practicing “pixel analytics,” Jonas said, in which they try to gather too much information from a single data point. The problem is that if too much analysis is done too soon, “you don’t have enough context” to make sense of the data, he said.

Context, Jonas explained, means looking at what is around the bit of data,in addition to the data itself. By doing too much stripping and filtering of seemingly useless data, one can lose valuable context. When you see the word “bat,” you look at the surrounding data to see what kind of bat it is, be it a baseball bat, a bat of the eyelids or a nocturnal creature, he said.>

“Low-quality data can be your friend. You’ll be glad you didn’t over-clean it,” Jonas said. Google, for instance, reaps the benefits of this approach. Sloppy typers will often get a “did you mean this?” suggestion after entering into the search engine a misspelled word. Google provides results to what it surmises are the correct word. Google guesses the correct word using a backlog of incorrectly typed queries.

Read more about this here:

http://www.cio.com.au/article/419404/ibm_puzzles_provide_clues_better_analysis/

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Using Decision Modeling to Make Predictive Analytics More Pervasive

5 Min Read

Customer Centricity Strategy #1 – Customer Analytics

2 Min Read

Supercharging Sales and Commerce in 2016

15 Min Read

Breaking Free of the One-Page Dashboard Rule

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?