Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big-Data PCA: 50 Years of Stock Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big-Data PCA: 50 Years of Stock Data
AnalyticsR Programming Language

Big-Data PCA: 50 Years of Stock Data

DavidMSmith
DavidMSmith
4 Min Read
SHARE

In this post, Revolution engineer Sherry LaMonica shows us how to use the RevoScaleR big-data package in Revolution R Enterprise to do principal components analysis on 50 years of stock market data — ed.

In this post, Revolution engineer Sherry LaMonica shows us how to use the RevoScaleR big-data package in Revolution R Enterprise to do principal components analysis on 50 years of stock market data — ed.

Principal components analysis, or PCA, seeks to find a set of orthogonal axes such that the first axis, or first principal component, accounts for as much variability as possible and subsequent axes are chosen to maximize variance while maintaining orthogonality with previous axes. Principal components are typically computed either by a singular value decomposition of the data matrix or an eigenvalue decomposition of a covariance or correlation matrix; the latter permits us to use the RevoScaleR function rxCovCor with the standard R function princomp.

More Read

The Internet of Things Will Lead Us into a New Industrial Revolution [VIDEO]
How to Be a Text Analytics Rock Star in your Organization
Big Data and Predictive Analytics in Video Games
5 Ways To Become Extinct as Big Data Evolves [INFOGRAPHIC]
Using Google Analytics Profiles to Model Your Funnel in Salesforce

Stock market data for open, high, low, close, and adjusted close from 1962 to 2010 is available from InfoChimps. As you might expect, these data are highly correlated, and principal components analysis can be used for data reduction. We read the original data (a set of 26 comma-separated text files, where each file is represented by a letter in the alphabet) into an .xdf file, NYSE_daily_prices.xdf:

nyseDataDir <- "C:/Users/Sherry/Downloads/NYSE"
dataSourceName <- file.path(nyseDataDir, "NYSE_daily_prices")
dataFileName <- "NYSE_daily_prices.xdf"
append <- "none"
for (i in LETTERS)
{
       importFile <- paste(dataSourceName, "_", i, ".csv", sep="")
       rxTextToXdf(importFile, dataFileName, stringsAsFactors=TRUE,
                append=append)
       append <- "rows"
}

The full data set includes 9.2 million observations of daily open-high-low-close data for some 2800 stocks:

> rxGetInfoXdf(dataFileName)
File name: NYSE_daily_prices.xdf
Number of observations: 9211031
Number of variables: 9
Number of blocks: 34 

We will use the rxCor function to calculate the Pearson’s correlation matrix for the variable specified, and pass this to the princomp function:

stockCor <- rxCor(~ stock_price_open + stock_price_high +
stock_price_low + stock_price_close +
stock_price_adj_close, data="NYSE_daily_prices.xdf")
stockPca <- princomp(covmat=stockCor)
summary(stockPca)
loadings(stockPca)
plot(stockPca) 

This yields the following output:

> summary(stockPca)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 2.0756631 0.8063270 0.197632281 0.0454173922
Proportion of Variance 0.8616755 0.1300327 0.007811704 0.0004125479
Cumulative Proportion 0.8616755 0.9917081 0.999519853 0.9999324005
Comp.5
Standard deviation 1.838470e-02
Proportion of Variance 6.759946e-05
Cumulative Proportion 1.000000e+00
 
> loadings(stockPca)
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
stock_price_open -0.470 -0.166 0.867
stock_price_high -0.477 -0.151 -0.276 0.410 -0.711
stock_price_low -0.477 -0.153 -0.282 0.417 0.704
stock_price_close -0.477 -0.149 -0.305 -0.811
stock_price_adj_close -0.309 0.951
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
SS loadings 1.0 1.0 1.0 1.0 1.0
Proportion Var 0.2 0.2 0.2 0.2 0.2
Cumulative Var 0.2 0.4 0.6 0.8 1.0

The default plot method for objects of class princomp is a screeplot, which is a barplot of the variances of the principal components. We can obtain the plot as usual by calling plot with our principal components object:

> plot(stockPca)

Pcp
Between them, the first two principal components explain 99% of the variance; we can therefore replace the five original variables by these two principal components with no appreciable loss of information.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The customer is King?

0 Min Read

Self-Correcting False Positives/Negatives: Exonerate the Innocent

17 Min Read

Is LinkedIn One Step Away from Becoming the World’s Largest Performance Management System?

1 Min Read

SAP HANA Brings ROI of More Than 500% for the University of Kentucky

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?