Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Big Data Myth
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > The Big Data Myth
AnalyticsBig Data

The Big Data Myth

AnniePettit
AnniePettit
4 Min Read
SHARE

English: The image shows datasets that are pub...

English: The image shows datasets that are pub...

Focus group moderators have a tough job. After each focus group with 6 to 10 people, they have reams of notes to work through, to analyze, to review for meaningful insights. It’s not an easy job because people don’t always say what they mean, they aren’t sure how to express themselves, and they talk over each other making for one massively messy dataset.

But, moderators have tricks of the trade, cool software tools that help them deal with these datasets. But imagine how overwhelmed a moderator would feel if they suddenly had to work with the same kind of dataset based on 300 participants. Overwhelmed, that is, until they found the right tools.

More Read

An Interactive Tool to Explain Simpson’s Paradox
Garbage in the Lockers and Gold on the Streets
iPerceptions has a Klout Score of 34
#21: Here’s a thought…
The Buck Stops with the Banks: How Streaming Analytics Detects Fraud and Keeps Customers Happy

Now imagine you’re a survey specialist who’s used to handing datasets of hundreds, maybe thousands of completes. It’s a lot of data but you’re an experienced survey researcher. You’ve got tools at hand, like Excel, SPSS, or SAS, that make your job easier. You’ve learned how to handle these big datasets. But what if you suddenly had to work with a dataset with millions of records. Nothing could be more overwhelming. Until you had the right tool at hand.

Finally, imagine you’re a data miner who’s used to handling transactional data, point of sales datasets with thousands of variables and millions or billions of records. It’s a massive dataset but once again, you’ve got the experience and data mining tools like SQL to deal effectively with these massive datasets. But what if you suddenly had to deal with datasets a hundred times larger. Well, it would only be scary until you found the right right tools. Which people have been using for a long time.

What’s my point. When you normally deal with datasets with a hundred records, any dataset with a thousand records is overwhelming and paralyzing. And when you normally deal with datasets with a thousand records and now you’ve been asked to work with a dataset with a million records, that volume of data is overwhelming. It’s not the size of the data that makes it big data, it’s your experience with that size of data that makes it big data.

So really, big data is a myth. There are simply datasets that are larger than what you are used to working with and that you don’t yet have sufficient experience or tools to work with. It doesn’t deserve a new name. It deserves time and patience to gain a new sense of comfort and learn the  tools that other people have already been using for a lon time. Nothing more.

Big data? No such thing.

Related articles
  • Developing skill sets across a global organization: Corrine Moy #IJMR2012 #MRX (lovestats.wordpress.com)
  • Big Data in the Music Industry: Richard Bowman #IJMR2012 #MRX (lovestats.wordpress.com)
  • Will big data elimiate the next national census? Keith Dugmore #IJMR2012 #MRX (lovestats.wordpress.com)
  • How do we know which research to trust? Rachel Kennedy #IJMR2012 #MRX (lovestats.wordpress.com)

Tagged: Big data

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to Become a Data Analyst

4 Min Read

Despite recession, open-source revenues are up

2 Min Read

How Small Businesses Can Use Big Data

5 Min Read
Image
Sentiment Analytics

Big Data: Making an Impact at the Post Office

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?