Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data Ingestion… or Indigestion?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Big Data Ingestion… or Indigestion?
Uncategorized

Big Data Ingestion… or Indigestion?

Gayle Nixon
Gayle Nixon
5 Min Read
SHARE
Data Indigestion

With the exception of those special few with iron stomachs, any rapid ingestion of a wide variety of rich, exotic foods can cause a lot of discomfort for quite a while. The same is true of data ingested into Hadoop.

Data Indigestion

With the exception of those special few with iron stomachs, any rapid ingestion of a wide variety of rich, exotic foods can cause a lot of discomfort for quite a while. The same is true of data ingested into Hadoop. Organizations are piling high volumes of diverse, disparate data sources into Hadoop at rapid speeds, but their inability to find value amidst all of that information is causing a fair amount of distress and uneasiness among both business and technical leaders.

One way to ease pains following data ingestion into Hadoop is to apply rigorous, scalable data quality methodologies to your Hadoop environment. This will ensure data is reliable for downstream use in business applications. In my last Big Data blog, I talked about how traditional principles of data quality and data governance are a necessity for Big Data and Hadoop. However, given all of the new data sources and applications associated with Big Data, newer approaches to data quality and governance are necessary as well. Here are a few considerations to help you more easily digest all of your business information in a Big Data environment:

A critical first step is to relinquish data quality processing during the ingestion phase. Traditionally, data quality applies during migration processes as data is sent to data warehouses and relational databases. Given the volume of information associated with Big Data, it is no longer operationally efficient to apply data quality during ingestion into Hadoop. The time and cost associated with record-by-record data quality processing would hinder your efforts and detract from the increased processing performance and efficiency that are part of the core value of Hadoop.

More Read

Next Week’s Can’t-Miss Webinars
Introduction to Open Data
Time to start applying SOA lessons to the cloud
The Best of Business Intelligence: Innovation at the Fringe
Making Government Information More Accessible

Next, Hadoop adopters should shift to data quality processing once data is ingested into Hadoop. Evidence of this is found in a recent TDWI Best Practices Report for Hadoop reported that the most prevalent data quality strategy among Hadoop adopters is to “ingest data immediately into Hadoop, and improve it later as needed” as opposed to improving data before it enters Hadoop. Native data quality processing ensures business rules are applied across all records on all nodes of your cluster, enabling real-time processing and supporting accurate, real-time analytics and business process that Big Data is meant to support. It also ensures that external, third-party reference data sources undergo the same data quality processing as data sets that are ingested from internal data sources.

With so many types of data entering Hadoop, it’s also important to recognize that data quality has to be tailored to different data types, and traditional data quality rules may no longer be widely applicable to all types of data. For example, unstructured data may have more value in its raw, unedited form, and certain data inaccuracies or “errors” might provide useful information about an inefficient process or product. But, if you’re like most organizations, leveraging Big Data to learn more about your customers, both accuracy and data linking are critical steps to extracting value from a wide array of data points. One of the key benefits of data quality for Big Data is the confluence of disparate data points into a single, clearer version of the truth that will help you build a better customer experience, stronger customer interactions, and more targeted marketing campaigns.

By combining traditional data quality concepts to the new nuances and intricacies of Big Data, you can keep Hadoop healthy and minimize the downstream impacts of dirty data.

by Denise Laforgia, Product Marketing Manager, Trillium Software

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive
sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Overcoming Objections to a Data Governance Program

8 Min Read

What Would Google Do? / What Does Google Do?

8 Min Read

Making Your “Marketing Marriage” Work!

5 Min Read

More music to the ears of SOA enthusiasts

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?