Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data and Analytics Must Be Properly Matched
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big Data and Analytics Must Be Properly Matched
AnalyticsBig Data

Big Data and Analytics Must Be Properly Matched

Roman Vladimirov
Roman Vladimirov
3 Min Read
Image
SHARE

ImageThose who have any reasonable familiarity with the modern tech sector will fully understand the difference between big data and analytics.

ImageThose who have any reasonable familiarity with the modern tech sector will fully understand the difference between big data and analytics. However, you might be surprised how many people think that the latter naturally follows the former – that as long as you’re storing big data and using analytics methods alongside it, you’ll be able to effectively leverage them. But this isn’t going to be the case – not by default. 

Analytics must be used to examine and interpret data in the proper context, or the results gleaned from such efforts may end up being all but pointless, with no tangible benefits to your business operations. It can be particularly effective to pay the most thorough attention to data from customer transactions and activity that’s specifically relevant to the company’s financial bottom line.

The significant perils of poor analytics applications
According to CSO, there have been several prominent examples in which the improper uses of analytical techniques on big data have showcased how it is not infallible. Using sentiment analysis, a project undertaken at Harvard University aimed to predict the United States’ unemployment rate by monitoring certain keywords showing up on Twitter – including “jobs” and “unemployment” – and attempting to find a correlation between their use or underuse and the rise or fall of the American jobless rate. However, when they noted a huge spike in tweets containing the word “jobs,” this ended up having nothing to do with their theory, but was connected to the death of Apple co-founder Steve Jobs.

More Read

The New Mainstream Appeal of Apache Spark
Six IT Essentials for Life Science Systems Integration
Nine Components of a HIPAA Risk Analysis
Game Changers
2011 Data Center Market Trends

Even seemingly small differences like that can derail the whole purpose of analytics and big data. Essentially, the source states that incidents like the one described above prove that close personal analysis of this data needs to occur in conjunction with analytics solutions.

Looking at the right business intelligence
Your company’s IT professionals’ experience with close data analysis needs to be applied to examining the right metrics through the best set of analytics methods. Marketing Land recommends that customer analytics – techniques for looking at valuable customer information. These can be applied to interpret purchase history, information gleaned from satisfaction surveys, notes made by your customer service staff regarding calls they’ve placed and feedback on individual products from your website.

The source warns against mistaking site visitor data with customer data, as some firms view the former as actionable business intelligence even though it’s not half as valuable as the latter.

image: analytics/shutterstock

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

data-driven digital signage strategies for B2B companies
Big Data

5 Ways to Use Digital Signage for Data-Centric B2B Companies

10 Min Read
Bad Data Mistakes
Big DataData Quality

The Lessons We can Learn from Bad Data Mistakes Made Throughout History

7 Min Read

Calculate the Value of Your Facebook Page

4 Min Read
Artificial Intelligence
AnalyticsBusiness IntelligenceMarketing

How Artificial Intelligence Will Change the Marketing Profession

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?