Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Auto-correlation for time series analysis
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Auto-correlation for time series analysis
Data Mining

Auto-correlation for time series analysis

SandroSaitta
SandroSaitta
2 Min Read
SHARE

Recently, I was reading the EPFL magazine and was surprised to see an article where they interviewed my master thesis adviser, Francois Fleuret. He explained data mining and gave an example about our project.

The goal of my master project was to predict the pollen concentration in the air for the following days. For that, we used different kinds of weather data (temperature, wind, sun, rain, etc.) available as daily data. The most interesting was not the data mining technique used, but rather the results obtained.

Recently, I was reading the EPFL magazine and was surprised to see an article where they interviewed my master thesis adviser, Francois Fleuret. He explained data mining and gave an example about our project.

More Read

Mobile Advertising, Clustering Algorithms, and Your Ticket for a Free Ride
Defining Analytics: Analytics
The Driving Force Behind Big Data: Data Connectivity
EDM Summit – some closing thoughts
How MapR’s M7 Platform Improves NoSQL and Hadoop

The goal of my master project was to predict the pollen concentration in the air for the following days. For that, we used different kinds of weather data (temperature, wind, sun, rain, etc.) available as daily data. The most interesting was not the data mining technique used, but rather the results obtained.

We used various techniques such as linear regression and decision tree. At the end, we also tried auto-correlation to study the effect of the quantity of pollen from one day on the following days. As the value was quite high, we plotted our prediction and saw that they were very close to yesterday pollen concentration. We could thus conclude with a sentence such as “tomorrow’s pollen concentration has a high probability to be like today’s concentration”.

pollen

The lesson that I learn from this project is to first try simpler methods (such as the cross- and auto-correlation in this case) before using any other, more complex, data mining techniques. This concept is related to the Occam’s razor which can be summarized by the well known quote “Entities must not be multiplied beyond necessity”. Of course, as it is recommended in data mining, you should always try more than one techniques to make predictions.

TAGGED:projects
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Implementing e2.0

3 Min Read

Product Success and Innovation

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?