Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Designing and implementing a web-based warranty system
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Designing and implementing a web-based warranty system
Business IntelligenceCRMData MiningPredictive Analytics

Designing and implementing a web-based warranty system

JamesTaylor
JamesTaylor
3 Min Read
SHARE

Copyright © 2009 James Taylor. Visit the original article at Designing and implementing a web-based warranty system.Frank Kozlowski of Kohler presentedf on a web-based warranty system. When they set out to develop the system their goals were to move to a start-of-the-art, easy to use system that was web-based so dealers could enter claims directly […]


Copyright © 2009 James Taylor. Visit the original article at Designing and implementing a web-based warranty system.

Frank Kozlowski of Kohler presentedf on a web-based warranty system. When they set out to develop the system their goals were to move to a start-of-the-art, easy to use system that was web-based so dealers could enter claims directly anywhere in the world (they have 12,000 dealers). They wanted to reduce their cycle time from claim to warranty (from 15 days to 1 day) and improve their data accuracy by getting data entered directly. Finally they wanted to prevent fraudulent claims. The system also needed to minimize the use of programmers when administering the system. At the same time it had to handle multiple policies, implement complex payment rules and support multiple languages. Finally it needed to support their short and long term business future – new products that might be implemented. Their solution was to select the Snap-On solution.

Key learnings from the project:

More Read

tangible data
In the Digital Age, Tangible Data Still Matters?
5 Phases of Data Analytics Maturation: Part 1
How Businesses Can Profit From Mobile Apps
Big Data: We Have the Technology, but Not the Vision
The Billboard Problem: Why Intelligent Ads Only Live Online, for Now
  • Understand and document the process you have and the process you want.
    And I would add that you should make sure you will be able to change the process yourself
  • You need to focus on data conversion – cleansing, integration, how much history and so on. When to convert, where to store it, how will you use historical data (for quality for instance)
    I would add that rules-based data cleansing and conversion can be very effective.
  • New systems have new fields and your historical data will not have values for these fields – you will have to do some intelligent selection of defaults
    Of course you can use rules to set these values too if you don’t want to use the same value everywhere.
  • Figure out the kinds of reports you need, and who can produce fixed or ad-hoc reports, and what that means for your data
  • Quickly identify your “misses” – because there will be some. Poor communication is the biggest problem
    Of course, if your solution has rules and workflow engines that allow you to make changes then you will be able to rapidly evolve the solution even if you do “miss” originally

I haven’t had a chance to see the Snap-On solution yet but it looks like it uses policy (rule) and workflow engines that allow non-technical users to evolve the product.

Previous


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Guest Blogger: Len Tashman Previews Fall 2012 Issue of Foresight

3 Min Read

How BI Is So Much More Than Just a Reporting Tool

12 Min Read

Cloud ERP – Efficient, Innovative, or Both?

7 Min Read

Bing Maps Updates Hyperlocal Application

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?