Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The “Avoidability” of Forecast Error
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > The “Avoidability” of Forecast Error
Predictive Analytics

The “Avoidability” of Forecast Error

mvgilliland
mvgilliland
4 Min Read
SHARE

“Forecastability” is a frequent topic of discussion on The BFD, and an essential consideration when evaluating the effectiveness of any forecasting process. A major critique of forecasting benchmarks is that they fail to take forecastability into consideration: An organization with “best in class” forecast accuracy may do so only because they have the easiest to forecast demand — not because their forecasting methods are particularly admirable.

Thus, the underlying forecastability has to be considered in any kind of comparison of forecasting performance.

“Forecastability” is a frequent topic of discussion on The BFD, and an essential consideration when evaluating the effectiveness of any forecasting process. A major critique of forecasting benchmarks is that they fail to take forecastability into consideration: An organization with “best in class” forecast accuracy may do so only because they have the easiest to forecast demand — not because their forecasting methods are particularly admirable.

Thus, the underlying forecastability has to be considered in any kind of comparison of forecasting performance.

More Read

Predictive Analytics: The Power and the Gory
Fill in the blanks: Which X is Most Likely to X?
New IBM study on business analytics and optimization
Another BI Vendor Acquired
Using Analytics to Handicap The Masters Golf Tournament

Along with the general forecastability discussion is the question “What is the best my forecasts can be?” Can we achieve 100% forecast accuracy (0% error), or is there some theoretical or practical limit?

It is generally acknowledged that, at the other extreme, the worst your forecasts should be is the error of the naive forecast (i.e., using a random walk as your forecasting method). You can achieve the error of the naive forecast with no investment in big computers or fancy software, or any forecasting staff or process at all. So the fundamental objective of any forecasting process is simply “Do no worse than the naive model.”

“What is the best my forecasts can be?” is difficult, and perhaps impossible to answer. But a compelling new approach on the “avoidability” of forecast error is presented by Steve Morlidge in the Summer 2013 issue of Foresight: The International Journal of Applied Forecasting.

How Good Is a “Good” Forecast?

Steve Morlidge

Steve Morlidge is co-author (with Steve Player) of the excellent book Future Ready: How to Master Business Forecasting (Wiley, 2010). After many years designing and running performance management systems at Unilever, Steve founded Satori Partners in the UK.

In his article, Steve examines the current state of thought on forecastability. He considers approaches using volatility (Coefficient of Variation), Theil’s U statistic, Relative Absolute Error, Mean Absolute Scaled Error, FVA, and “product DNA” (an approach suggested by Sean Schubert in the Summer 2012 issue of Foresight).

ImageSteve starts with an assertion that “the performance of any system that we might want to forecast will always contain noise.” That is, outside the underlying pattern or rule or signal guiding the behavior, there is some level of randomness. So even if we know the rule guiding the behavior, we model the rule perfectly in our forecasting algorithm, and that rule doesn’t change in the future, we will still have some amount of forecast error determined by the level of randomness (noise). Such error is “unavoidable.”

Errors from the naive forecast are one way of meauring the amount of noise in data. From this, Steve makes the conjecture that “there is a mathematical relationship between these naive forecast errors and the lowest possible errors from a forecast.”

TAGGED:Forecast Error
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?